Your browser doesn't support javascript.
loading
Neutralization of SARS-CoV-2 BA.2.86 and JN.1 by CF501 adjuvant-enhanced immune responses targeting the conserved epitopes in ancestral RBD.
Liu, Zezhong; Zhou, Jie; Wang, Weijie; Zhang, Guangxu; Xing, Lixiao; Zhang, Keqiang; Wang, Yuanzhou; Xu, Wei; Wang, Qian; Man, Qiuhong; Wang, Qiao; Ying, Tianlei; Zhu, Yun; Jiang, Shibo; Lu, Lu.
Afiliación
  • Liu Z; Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, School of Pharmacy, Shanghai Medical College, Fudan University, Shanghai 200032, China. Electronic address: zezhongliu@fudan.edu.cn.
  • Zhou J; Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, School of Pharmacy, Shanghai Medical College, Fudan University, Shanghai 200032, China.
  • Wang W; Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, School of Pharmacy, Shanghai Medical College, Fudan University, Shanghai 200032, China.
  • Zhang G; Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, School of Pharmacy, Shanghai Medical College, Fudan University, Shanghai 200032, China.
  • Xing L; Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, School of Pharmacy, Shanghai Medical College, Fudan University, Shanghai 200032, China.
  • Zhang K; Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, School of Pharmacy, Shanghai Medical College, Fudan University, Shanghai 200032, China.
  • Wang Y; Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, School of Pharmacy, Shanghai Medical College, Fudan University, Shanghai 200032, China.
  • Xu W; Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, School of Pharmacy, Shanghai Medical College, Fudan University, Shanghai 200032, China.
  • Wang Q; Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, School of Pharmacy, Shanghai Medical College, Fudan University, Shanghai 200032, China.
  • Man Q; Department of Laboratory Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200032, China.
  • Wang Q; Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, School of Pharmacy, Shanghai Medical College, Fudan University, Shanghai 200032, China.
  • Ying T; Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, School of Pharmacy, Shanghai Medical College, Fudan University, Shanghai 200032, China.
  • Zhu Y; National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
  • Jiang S; Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, School of Pharmacy, Shanghai Medical College, Fudan University, Shanghai 200032, China. Electronic address: shibojiang@fudan.edu.cn.
  • Lu L; Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, School of Pharmacy, Shanghai Medical College, Fudan University, Shanghai 200032, China. Electronic address: lul@fudan.edu.cn.
Cell Rep Med ; 5(3): 101445, 2024 Mar 19.
Article en En | MEDLINE | ID: mdl-38428429
ABSTRACT
The emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariants BA.2.86 and JN.1 raise concerns regarding their potential to evade immune surveillance and spread globally. Here, we test sera from rhesus macaques immunized with 3 doses of wild-type SARS-CoV-2 receptor-binding domain (RBD)-Fc adjuvanted with the STING agonist CF501. We find that the sera can potently neutralize pseudotyped XBB.1.5, XBB.1.16, CH.1.1, EG.5, BA.2.86, and JN.1, with 50% neutralization titers ranging from 3,494 to 7,424. We also demonstrate that CF501, but not Alum, can enhance immunogenicity of the RBD from wild-type SARS-CoV-2 to improve induction of broadly neutralizing antibodies (bnAbs) with binding specificity and activity similar to those of SA55, BN03, and S309, thus exhibiting extraordinary broad-spectrum neutralizing activity. Overall, the RBD from wild-type SARS-CoV-2 also contains conservative epitopes. The RBD-Fc adjuvanted by CF501 can elicit potent bnAbs against JN.1, BA.2.86, and other XBB subvariants. This strategy can be adopted to develop broad-spectrum vaccines to combat future emerging and reemerging viral infectious diseases.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: SARS-CoV-2 / COVID-19 Límite: Animals Idioma: En Revista: Cell Rep Med Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: SARS-CoV-2 / COVID-19 Límite: Animals Idioma: En Revista: Cell Rep Med Año: 2024 Tipo del documento: Article