Your browser doesn't support javascript.
loading
Mechanism interpretation of Guhan Yangshengjing for protection against Alzheimer's disease by network pharmacology and molecular docking.
Cheung, Suet; Zhong, Yuan; Wu, Lei; Jia, Xiaomeng; He, Meng-Qi; Ai, Yongjian; Jiao, Qisen; Liang, Qionglin.
Afiliación
  • Cheung S; MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, SATCM Key Laboratory of Traditional Chinese Medicine Chemistry, Institute of Traditional Chinese Medicine-X, Chinese Medicine Modernization Research Center, Department of Chemistry, Tsinghua University, Beijing, 100084, Ch
  • Zhong Y; TUS-PHARMA Group Co., Ltd, China.
  • Wu L; MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, SATCM Key Laboratory of Traditional Chinese Medicine Chemistry, Institute of Traditional Chinese Medicine-X, Chinese Medicine Modernization Research Center, Department of Chemistry, Tsinghua University, Beijing, 100084, Ch
  • Jia X; MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, SATCM Key Laboratory of Traditional Chinese Medicine Chemistry, Institute of Traditional Chinese Medicine-X, Chinese Medicine Modernization Research Center, Department of Chemistry, Tsinghua University, Beijing, 100084, Ch
  • He MQ; MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, SATCM Key Laboratory of Traditional Chinese Medicine Chemistry, Institute of Traditional Chinese Medicine-X, Chinese Medicine Modernization Research Center, Department of Chemistry, Tsinghua University, Beijing, 100084, Ch
  • Ai Y; MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, SATCM Key Laboratory of Traditional Chinese Medicine Chemistry, Institute of Traditional Chinese Medicine-X, Chinese Medicine Modernization Research Center, Department of Chemistry, Tsinghua University, Beijing, 100084, Ch
  • Jiao Q; TUS-PHARMA Group Co., Ltd, China. Electronic address: 402868175@qq.com.
  • Liang Q; MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, SATCM Key Laboratory of Traditional Chinese Medicine Chemistry, Institute of Traditional Chinese Medicine-X, Chinese Medicine Modernization Research Center, Department of Chemistry, Tsinghua University, Beijing, 100084, Ch
J Ethnopharmacol ; 328: 117976, 2024 Jun 28.
Article en En | MEDLINE | ID: mdl-38492794
ABSTRACT
ETHNOPHARMACOLOGICAL RELEVANCE Guhan Yangshengjing (GHYSJ) is an effective prescription for delaying progression of Alzheimer's disease (AD) based on the ancient Chinese medical classics excavated from Mawangdui Han Tomb. Comprising a combination of eleven traditional Chinese herbs, the precise protective mechanism through which GHYSJ acts on AD progression remains unclear and has significant implications for the development of new drugs to treat AD. AIM OF THE STUDY To investigate the mechanism of GHYSJ in the treatment of AD through network pharmacology and validate the results through in vitro experiments. MATERIALS AND

METHODS:

Chemical composition-target-pathway network and protein-protein interaction network were constructed by network pharmacology to predict the potential targets of GHYSJ for the treatment of AD. The interaction relationship between active ingredients and targets was verified by molecular docking and molecular force. Furthermore, the chemical constituents of GHYSJ were analyzed by LC-MS and HPLC, the effects of GHYSJ on animal tissues were analyzed by H&E staining. An Aß-induced SH-SY5Y cellular model was established to validate the core pathways and targets predicted by network pharmacology and molecular docking.

RESULTS:

The results of the network pharmacology analysis revealed a total of 155 bioactive compounds capable of crossing the blood-brain barrier and interacting with 677 targets, among which 293 targets specifically associated with AD, which mainly participated in and regulated the amyloid aggregation pathway and PI3K/Akt signaling pathway, thereby treating AD. In addition, molecular docking analysis revealed a robust binding affinity between the principal bioactive constituents of GHYSJ and crucial targets implicated in AD. Our findings were further substantiated by in vitro experiments, which demonstrated that Liquiritigenin and Ginsenosides Rh4, crucial constituents of GHYSJ, as well as GHYSJ pharmaceutic serum, exhibited a significant down-regulation of BACE1 expression in Aß-induced damaged SH-SY5Y cells. This study provides valuable data and theoretical underpinning for the potential therapeutic application of GHYSJ in the treatment of AD and secondary development of GHYSJ prescription.

CONCLUSION:

Through network pharmacology, molecular docking, LC-MS, and cellular experiments, GHYSJ was initially confirmed to delay the progression of AD by regulating the expression of BACE1 in Amyloid aggregation pathway. Our observations provided valuable data and theoretical underpinning for the potential therapeutic application of GHYSJ in the treatment of AD.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Medicamentos Herbarios Chinos / Enfermedad de Alzheimer / Neuroblastoma Límite: Animals / Humans Idioma: En Revista: J Ethnopharmacol Año: 2024 Tipo del documento: Article País de afiliación: Suiza

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Medicamentos Herbarios Chinos / Enfermedad de Alzheimer / Neuroblastoma Límite: Animals / Humans Idioma: En Revista: J Ethnopharmacol Año: 2024 Tipo del documento: Article País de afiliación: Suiza