Your browser doesn't support javascript.
loading
Ppx1 putative exopolyphosphatase is essential for polyphosphate accumulation in Lacticaseibacillus paracasei.
Corrales, Daniela; Alcántara, Cristina; Zúñiga, Manuel; Monedero, Vicente.
Afiliación
  • Corrales D; Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Spain.
  • Alcántara C; Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Spain.
  • Zúñiga M; Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Spain.
  • Monedero V; Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Spain.
Appl Environ Microbiol ; 90(5): e0229023, 2024 05 21.
Article en En | MEDLINE | ID: mdl-38619267
ABSTRACT
The linear polymer polyphosphate (poly-P) is present across all three domains of life and serves diverse physiological functions. The enzyme polyphosphate kinase (Ppk) is responsible for poly-P synthesis, whereas poly-P degradation is carried out by the enzyme exopolyphosphatase (Ppx). In many Lactobacillaceae, the Ppk-encoding gene (ppk) is found clustered together with two genes encoding putative exopolyphosphatases (ppx1 and ppx2) each having different domain compositions, with the gene order ppx1-ppk-ppx2. However, the specific function of these ppx genes remains unexplored. An in-frame deletion of ppx1 in Lacticaseibacillus paracasei BL23 resulted in bacteria unable to accumulate poly-P, whereas the disruption of ppx2 did not affect poly-P synthesis. The expression of ppk was not altered in the Δppx1 strain, and poly-P synthesis in this strain was only restored by expressing ppx1 in trans. Moreover, no poly-P synthesis was observed when ppk was expressed from a plasmid in the Δppx1 strain. Purified Ppx2 exhibited in vitro exopolyphosphatase activity, whereas no in vitro enzymatic activity could be demonstrated for Ppx1. This observation corresponds with the absence in Ppx1 of conserved motifs essential for catalysis found in characterized exopolyphosphatases. Furthermore, assays with purified Ppk and Ppx1 evidenced that Ppx1 enhanced Ppk activity. These results demonstrate that Ppx1 is essential for poly-P synthesis in Lc. paracasei and have unveiled, for the first time, an unexpected role of Ppx1 exopolyphosphatase in poly-P synthesis.IMPORTANCEPoly-P is a pivotal molecular player in bacteria, participating in a diverse array of processes ranging from stress resilience to pathogenesis while also serving as a functional component in probiotic bacteria. The synthesis of poly-P is tightly regulated, but the underlying mechanisms remain incompletely elucidated. Our study sheds light on the distinctive role played by the two exopolyphosphatases (Ppx) found in the Lactobacillaceae bacterial group, of relevance in food and health. This particular group is noteworthy for possessing two Ppx enzymes, supposedly involved in poly-P degradation. Remarkably, our investigation uncovers an unprecedented function of Ppx1 in Lacticaseibacillus paracasei, where its absence leads to the total cessation of poly-P synthesis, paralleling the impact observed upon eliminating the poly-P forming enzyme, poly-P kinase. Unlike the anticipated role as a conventional exopolyphosphatase, Ppx1 demonstrates an unexpected function. Our results added a layer of complexity to our understanding of poly-P dynamics in bacteria.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Polifosfatos / Ácido Anhídrido Hidrolasas / Lacticaseibacillus paracasei Idioma: En Revista: Appl Environ Microbiol Año: 2024 Tipo del documento: Article País de afiliación: España

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Polifosfatos / Ácido Anhídrido Hidrolasas / Lacticaseibacillus paracasei Idioma: En Revista: Appl Environ Microbiol Año: 2024 Tipo del documento: Article País de afiliación: España