Your browser doesn't support javascript.
loading
Survival estimation of oral cancer using fuzzy deep learning.
Somyanonthanakul, Rachasak; Warin, Kritsasith; Chaowchuen, Sitthi; Jinaporntham, Suthin; Panichkitkosolkul, Wararit; Suebnukarn, Siriwan.
Afiliación
  • Somyanonthanakul R; College of Digital Innovation Technology, Rangsit University, Pathum Thani, Thailand.
  • Warin K; Faculty of Dentistry, Thammasat University, Pathum Thani, Thailand. warin@tu.ac.th.
  • Chaowchuen S; Udonthani Cancer Hospital, Muang Udonthani, Udonthani, Thailand.
  • Jinaporntham S; Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand.
  • Panichkitkosolkul W; Faculty of Science and Technology, Thammasat University, Pathum Thani, Thailand.
  • Suebnukarn S; Faculty of Dentistry, Thammasat University, Pathum Thani, Thailand.
BMC Oral Health ; 24(1): 519, 2024 May 02.
Article en En | MEDLINE | ID: mdl-38698358
ABSTRACT

BACKGROUND:

Oral cancer is a deadly disease and a major cause of morbidity and mortality worldwide. The purpose of this study was to develop a fuzzy deep learning (FDL)-based model to estimate the survival time based on clinicopathologic data of oral cancer.

METHODS:

Electronic medical records of 581 oral squamous cell carcinoma (OSCC) patients, treated with surgery with or without radiochemotherapy, were collected retrospectively from the Oral and Maxillofacial Surgery Clinic and the Regional Cancer Center from 2011 to 2019. The deep learning (DL) model was trained to classify survival time classes based on clinicopathologic data. Fuzzy logic was integrated into the DL model and trained to create FDL-based models to estimate the survival time classes.

RESULTS:

The performance of the models was evaluated on a test dataset. The performance of the DL and FDL models for estimation of survival time achieved an accuracy of 0.74 and 0.97 and an area under the receiver operating characteristic (AUC) curve of 0.84 to 1.00 and 1.00, respectively.

CONCLUSIONS:

The integration of fuzzy logic into DL models could improve the accuracy to estimate survival time based on clinicopathologic data of oral cancer.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Neoplasias de la Boca / Lógica Difusa / Aprendizaje Profundo Límite: Adult / Aged / Female / Humans / Male / Middle aged Idioma: En Revista: BMC Oral Health Asunto de la revista: ODONTOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Tailandia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Neoplasias de la Boca / Lógica Difusa / Aprendizaje Profundo Límite: Adult / Aged / Female / Humans / Male / Middle aged Idioma: En Revista: BMC Oral Health Asunto de la revista: ODONTOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Tailandia