Your browser doesn't support javascript.
loading
Computationally restoring the potency of a clinical antibody against Omicron.
Desautels, Thomas A; Arrildt, Kathryn T; Zemla, Adam T; Lau, Edmond Y; Zhu, Fangqiang; Ricci, Dante; Cronin, Stephanie; Zost, Seth J; Binshtein, Elad; Scheaffer, Suzanne M; Dadonaite, Bernadeta; Petersen, Brenden K; Engdahl, Taylor B; Chen, Elaine; Handal, Laura S; Hall, Lynn; Goforth, John W; Vashchenko, Denis; Nguyen, Sam; Weilhammer, Dina R; Lo, Jacky Kai-Yin; Rubinfeld, Bonnee; Saada, Edwin A; Weisenberger, Tracy; Lee, Tek-Hyung; Whitener, Bradley; Case, James B; Ladd, Alexander; Silva, Mary S; Haluska, Rebecca M; Grzesiak, Emilia A; Earnhart, Christopher G; Hopkins, Svetlana; Bates, Thomas W; Thackray, Larissa B; Segelke, Brent W; Lillo, Antonietta Maria; Sundaram, Shivshankar; Bloom, Jesse D; Diamond, Michael S; Crowe, James E; Carnahan, Robert H; Faissol, Daniel M.
Afiliación
  • Desautels TA; Computational Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, USA.
  • Arrildt KT; Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, USA.
  • Zemla AT; Global Security Computing Applications Division, Lawrence Livermore National Laboratory, Livermore, CA, USA.
  • Lau EY; Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, USA.
  • Zhu F; Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, USA.
  • Ricci D; Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, USA.
  • Cronin S; Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA.
  • Zost SJ; Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA.
  • Binshtein E; Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA.
  • Scheaffer SM; Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
  • Dadonaite B; Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA.
  • Petersen BK; Computational Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, USA.
  • Engdahl TB; Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA.
  • Chen E; Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA.
  • Handal LS; Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA.
  • Hall L; Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA.
  • Goforth JW; Global Security Computing Applications Division, Lawrence Livermore National Laboratory, Livermore, CA, USA.
  • Vashchenko D; Applications Simulations and Quality Division, Lawrence Livermore National Laboratory, Livermore, CA, USA.
  • Nguyen S; Computational Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, USA.
  • Weilhammer DR; Google, Alphabet Inc., Mountain View, CA, USA.
  • Lo JK; Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, USA.
  • Rubinfeld B; Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, USA.
  • Saada EA; Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, USA.
  • Weisenberger T; Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, USA.
  • Lee TH; Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, USA.
  • Whitener B; Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, USA.
  • Case JB; Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
  • Ladd A; Vir Biotechnology, San Francisco, CA, USA.
  • Silva MS; Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
  • Haluska RM; Computational Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, USA.
  • Grzesiak EA; Global Security Computing Applications Division, Lawrence Livermore National Laboratory, Livermore, CA, USA.
  • Earnhart CG; Applications Simulations and Quality Division, Lawrence Livermore National Laboratory, Livermore, CA, USA.
  • Hopkins S; Global Security Computing Applications Division, Lawrence Livermore National Laboratory, Livermore, CA, USA.
  • Bates TW; Joint Program Executive Office for Chemical, Biological, Radiological, and Nuclear Defense, US Department of Defense, Frederick, MD, USA.
  • Thackray LB; Joint Rsearch and Development Inc., Stafford, VA, USA.
  • Segelke BW; Computational Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, USA.
  • Lillo AM; Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, USA.
  • Bloom JD; Los Alamos National Laboratory, Bioscience Division, Los Alamos, NM, USA.
  • Diamond MS; Center for Bioengineering, Lawrence Livermore National Laboratory, Livermore, CA, USA.
  • Crowe JE; Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA.
  • Carnahan RH; Howard Hughes Medical Institute, Seattle, WA, USA.
  • Faissol DM; Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
Nature ; 629(8013): 878-885, 2024 May.
Article en En | MEDLINE | ID: mdl-38720086
ABSTRACT
The COVID-19 pandemic underscored the promise of monoclonal antibody-based prophylactic and therapeutic drugs1-3 and revealed how quickly viral escape can curtail effective options4,5. When the SARS-CoV-2 Omicron variant emerged in 2021, many antibody drug products lost potency, including Evusheld and its constituent, cilgavimab4-6. Cilgavimab, like its progenitor COV2-2130, is a class 3 antibody that is compatible with other antibodies in combination4 and is challenging to replace with existing approaches. Rapidly modifying such high-value antibodies to restore efficacy against emerging variants is a compelling mitigation strategy. We sought to redesign and renew the efficacy of COV2-2130 against Omicron BA.1 and BA.1.1 strains while maintaining efficacy against the dominant Delta variant. Here we show that our computationally redesigned antibody, 2130-1-0114-112, achieves this objective, simultaneously increases neutralization potency against Delta and subsequent variants of concern, and provides protection in vivo against the strains tested WA1/2020, BA.1.1 and BA.5. Deep mutational scanning of tens of thousands of pseudovirus variants reveals that 2130-1-0114-112 improves broad potency without increasing escape liabilities. Our results suggest that computational approaches can optimize an antibody to target multiple escape variants, while simultaneously enriching potency. Our computational approach does not require experimental iterations or pre-existing binding data, thus enabling rapid response strategies to address escape variants or lessen escape vulnerabilities.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Simulación por Computador / Diseño de Fármacos / Anticuerpos Neutralizantes / SARS-CoV-2 / Anticuerpos Monoclonales / Anticuerpos Antivirales Límite: Animals / Female / Humans Idioma: En Revista: Nature Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Simulación por Computador / Diseño de Fármacos / Anticuerpos Neutralizantes / SARS-CoV-2 / Anticuerpos Monoclonales / Anticuerpos Antivirales Límite: Animals / Female / Humans Idioma: En Revista: Nature Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos