Your browser doesn't support javascript.
loading
Redox-Modified Nanostructured Electrochemical Surfaces for Continuous Glucose Monitoring in Complex Biological Fluids.
Janfaza, Sajjad; Radha Shanmugam, Nandhinee; Jolly, Pawan; Kovur, Prashanthi; Singh, Upasana; Mackay, Scott; Wishart, David; Ingber, Donald E.
Afiliación
  • Janfaza S; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
  • Radha Shanmugam N; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
  • Jolly P; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
  • Kovur P; Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E8, Canada.
  • Singh U; Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E8, Canada.
  • Mackay S; Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E8, Canada.
  • Wishart D; Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E8, Canada.
  • Ingber DE; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
Nanomaterials (Basel) ; 14(9)2024 May 03.
Article en En | MEDLINE | ID: mdl-38727390
ABSTRACT
Continuous glucose monitoring is valuable for people with diabetes but faces limitations due to enzyme-electrode interactions and biofouling from biological samples that reduce sensor sensitivity and the monitoring performance. We created an enzyme-based electrochemical system with a unique nanocomposite coating that incorporates the redox molecule, aminoferrocene (NH2-Fc). This coating enhances stability via electroactivity and reduces nonspecific binding, as demonstrated through cyclic voltammetry. Our approach enables real-time glucose detection via chronoamperometry with a calculated linear range of 0.5 to 20 mM and a 1 mM detection limit. Validated with plasma and saliva, this platform shows promise for robust metabolite detection in clinical and research contexts. This versatile platform can be applied to accurately monitor a wide range of metabolites in various biological matrices, improving patient outcomes.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nanomaterials (Basel) Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nanomaterials (Basel) Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos