Selenium nanoparticles decorated with polysaccharides from Sargassum fusiforme protects against 6-OHDA-induced neurotoxicity in PC12 cells and rat model of Parkinson's disease.
Nanomedicine
; 59: 102755, 2024 Jul.
Article
en En
| MEDLINE
| ID: mdl-38762132
ABSTRACT
Parkinson's disease (PD) is a neurodegenerative disorder and identifying disease-causing pathways and drugs that target them has remained challenging. Herein, selenium nanoparticles decorated with polysaccharides from Sargassum fusiforme (SFPS-SeNPs) were investigated on 6-OHDA-induced neurotoxicity in PC12 cells and rats. 6-OHDA can significantly increase neurotoxicity, oxidative stress and decrease the activity of superoxide dismutase (SOD) and glutathione peroxidase (GPx) both in vitro and vivo. In vitro, treatment with SFPS-SeNPs can significantly decrease 6-OHDA cytotoxicity, reactive oxygen species (ROS) production or malondialdehyde (MDA) levels, and cell apoptosis, significantly increased the activity of SOD and GPx. In vivo, 6-OHDA exposure could also decrease the expression of Nrf2 and OH-1, while treatment with SFPS-SeNPs (1 mg Se/kg) increased. SFPS-SeNPs can protect neurons from 6-OHDA-induced neurotoxicity by regulating apoptosis and Nrf2/ARE pathway. The present study demonstrated that SFPS-SeNPs is a good candidate for developing a new drug against neurodegenerative diseases such as PD.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Polisacáridos
/
Selenio
/
Oxidopamina
/
Apoptosis
/
Estrés Oxidativo
/
Sargassum
/
Nanopartículas
Límite:
Animals
Idioma:
En
Revista:
Nanomedicine
Asunto de la revista:
BIOTECNOLOGIA
Año:
2024
Tipo del documento:
Article