Your browser doesn't support javascript.
loading
Synergistic Engineering of CoO/MnO Heterostructures Integrated with Nitrogen-Doped Carbon Nanofibers for Lithium-Ion Batteries.
Guo, Donglei; Xu, Yaya; Xu, Jiaqi; Guo, Kailong; Wu, Naiteng; Cao, Ang; Liu, Guilong; Liu, Xianming.
Afiliación
  • Guo D; Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China.
  • Xu Y; Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China.
  • Xu J; Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China.
  • Guo K; Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China.
  • Wu N; Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China.
  • Cao A; Department of Physics, Technical University of Denmark, 2800 Lyngby, Denmark.
  • Liu G; Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China.
  • Liu X; Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China.
Molecules ; 29(10)2024 May 09.
Article en En | MEDLINE | ID: mdl-38792090
ABSTRACT
The integration of heterostructures within electrode materials is pivotal for enhancing electron and Li-ion diffusion kinetics. In this study, we synthesized CoO/MnO heterostructures to enhance the electrochemical performance of MnO using a straightforward electrostatic spinning technique followed by a meticulously controlled carbonization process, which results in embedding heterostructured CoO/MnO nanoparticles within porous nitrogen-doped carbon nanofibers (CoO/MnO/NC). As confirmed by density functional theory calculations and experimental results, CoO/MnO heterostructures play a significant role in promoting Li+ ion and charge transfer, improving electronic conductivity, and reducing the adsorption energy. The accelerated electron and Li-ion diffusion kinetics, coupled with the porous nitrogen-doped carbon nanofiber structure, contribute to the exceptional electrochemical performance of the CoO/MnO/NC electrode. Specifically, the as-prepared CoO/MnO/NC exhibits a high reversible specific capacity of 936 mA h g-1 at 0.1 A g-1 after 200 cycles and an excellent high-rate capacity of 560 mA h g-1 at 5 A g-1, positioning it as a competitive anode material for lithium-ion batteries. This study underscores the critical role of electronic and Li-ion regulation facilitated by heterostructures, offering a promising pathway for designing transition metal oxide-based anode materials with high performances for lithium-ion batteries.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Molecules Asunto de la revista: BIOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Molecules Asunto de la revista: BIOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: China