Your browser doesn't support javascript.
loading
Leveraging AI to improve evidence synthesis in conservation.
Berger-Tal, Oded; Wong, Bob B M; Adams, Carrie Ann; Blumstein, Daniel T; Candolin, Ulrika; Gibson, Matthew J; Greggor, Alison L; Lagisz, Malgorzata; Macura, Biljana; Price, Catherine J; Putman, Breanna J; Snijders, Lysanne; Nakagawa, Shinichi.
Afiliación
  • Berger-Tal O; Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel. Electronic address: bergerod@bgu.ac.il.
  • Wong BBM; School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia. Electronic address: bob.wong@monash.edu.
  • Adams CA; Department of Fish, Wildlife, and Conservation Biology, Colorado State University, 1474 Campus Delivery, Fort Collins, CO 80523-1474, USA.
  • Blumstein DT; Department of Ecology & Evolutionary Biology, University of California, 621 Young Drive South, Los Angeles, CA 90095-1606, USA.
  • Candolin U; Organismal and Evolutionary Biology Research Programme, University of Helsinki, 00014 Helsinki, Finland.
  • Gibson MJ; Evolution & Ecology Research Centre, Centre for Ecosystem Science, and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
  • Greggor AL; Conservation Science and Wildlife Health, San Diego Zoo Wildlife Alliance, 15600 San Pasqual Valley Road, Escondido, CA 92027-7000, USA.
  • Lagisz M; Evolution & Ecology Research Centre, Centre for Ecosystem Science, and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
  • Macura B; Stockholm Environment Institute (HQ), Box 24218, Stockholm, 10451, Sweden.
  • Price CJ; School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia.
  • Putman BJ; Department of Biology, California State University, 5500 University Parkway, San Bernardino, CA 92407-2393, USA.
  • Snijders L; Behavioural Ecology Group, Wageningen University & Research, De Elst 1, 6708 WD, Wageningen, The Netherlands.
  • Nakagawa S; Evolution & Ecology Research Centre, Centre for Ecosystem Science, and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia. Electronic address: s.nakagawa@unsw.edu.au.
Trends Ecol Evol ; 39(6): 548-557, 2024 Jun.
Article en En | MEDLINE | ID: mdl-38796352
ABSTRACT
Systematic evidence syntheses (systematic reviews and maps) summarize knowledge and are used to support decisions and policies in a variety of applied fields, from medicine and public health to biodiversity conservation. However, conducting these exercises in conservation is often expensive and slow, which can impede their use and hamper progress in addressing the current biodiversity crisis. With the explosive growth of large language models (LLMs) and other forms of artificial intelligence (AI), we discuss here the promise and perils associated with their use. We conclude that, when judiciously used, AI has the potential to speed up and hopefully improve the process of evidence synthesis, which can be particularly useful for underfunded applied fields, such as conservation science.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Inteligencia Artificial / Conservación de los Recursos Naturales / Biodiversidad Idioma: En Revista: Trends Ecol Evol Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Inteligencia Artificial / Conservación de los Recursos Naturales / Biodiversidad Idioma: En Revista: Trends Ecol Evol Año: 2024 Tipo del documento: Article