Your browser doesn't support javascript.
loading
Structure-Activity Relationships of the Structural Analogs Au8Cu1 and Au8Ag1 in the Electrocatalytic CO2 Reduction Reaction.
Su, Shangyu; Zhou, Yanting; Xiong, Lin; Jin, Shan; Du, Yuanxin; Zhu, Manzhou.
Afiliación
  • Su S; Institutes of Physical Science and Information Technology, Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Provi
  • Zhou Y; Institutes of Physical Science and Information Technology, Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Provi
  • Xiong L; School of Food and Chemical Engineering, Shaoyang University, Shaoyang, 422000, PR China.
  • Jin S; Institutes of Physical Science and Information Technology, Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Provi
  • Du Y; Institutes of Physical Science and Information Technology, Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Provi
  • Zhu M; Institutes of Physical Science and Information Technology, Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Provi
Angew Chem Int Ed Engl ; 63(34): e202404629, 2024 Aug 19.
Article en En | MEDLINE | ID: mdl-38845560
ABSTRACT
Owing to the significant attention directed toward alloy metal nanoclusters, it is crucial to explore the relationship between their structures and their performance during the electrocatalytic CO2 reduction reaction (eCO2RR) and discover potential synergistic effects for the design of novel functional nanoclusters. However, a lack of suitable analogs makes this investigation challenging. In this study, we synthesized a well-defined pair of structural analogs, [Au8Cu1(SAdm)4(Dppm)3Cl]2+ and [Au8Ag1(SAdm)4(Dppm)3Cl]2+ (Au8Cu1 and Au8Ag1, respectively), and characterized them. Single-crystal X-ray diffraction analysis revealed that Au8M1 (M=Cu/Ag) consists of a tetrahedral Au3M1 core capped by three (Dppm)Au staples, one Au2(SR)3 staple, one lone SR ligand, and a terminal Cl ligand. Ag and Cu were doped at the same site in the Au8M1 nanoclusters, which has rarely been reported. Au8Cu1 exhibited a significantly higher CO Faradaic efficiency (FECO; ~82.2 %) during eCO2RR than that of Au8Ag1 (FECO; ~33.1 %). Density functional theory calculations demonstrated that *COOH is the key intermediate in the reduction of CO2 to CO. The formation of *COOH on Au8Cu1 is more thermodynamically stable than on Au8Ag1, and Au8Cu1 shows a smaller *CO formation energy than that on Au8Ag1, which promotes the reduction of CO2. We believe that the structural analogs Au8Cu1 and Au8Ag1 offer a suitable template for the in-depth investigation of structure-property correlations at the atomic level.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Año: 2024 Tipo del documento: Article