Your browser doesn't support javascript.
loading
High variation of virulence in Aphanomyces astaci strains lacks association with pathogenic traits and mtDNA haplogroups.
Francesconi, Caterina; Bostjancic, Ljudevit Luka; Bonassin, Lena; Schardt, Leonie; Rutz, Christelle; Makkonen, Jenny; Schwenk, Klaus; Lecompte, Odile; Theissinger, Kathrin.
Afiliación
  • Francesconi C; Department of Molecular Ecology, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Fortstrasse 7, 76829 Landau, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, 60325 Frankfurt am
  • Bostjancic LL; Department of Molecular Ecology, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Fortstrasse 7, 76829 Landau, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, 60325 Frankfurt am
  • Bonassin L; Department of Molecular Ecology, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Fortstrasse 7, 76829 Landau, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, 60325 Frankfurt am
  • Schardt L; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, 60325 Frankfurt am Main, Germany.
  • Rutz C; Department of Computer Science, ICube, UMR 7357, University of Strasbourg, CNRS, Centre de Recherche en Biomédecine de Strasbourg, Rue Eugène Boeckel 1, 67000 Strasbourg, France.
  • Makkonen J; BioSafe - Biological Safety Solutions Ltd./Oy, Kuopio, Finland.
  • Schwenk K; Department of Molecular Ecology, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Fortstrasse 7, 76829 Landau, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, 60325 Frankfurt am
  • Lecompte O; Department of Computer Science, ICube, UMR 7357, University of Strasbourg, CNRS, Centre de Recherche en Biomédecine de Strasbourg, Rue Eugène Boeckel 1, 67000 Strasbourg, France.
  • Theissinger K; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, 60325 Frankfurt am Main, Germany; Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, D-35392 Giessen, Germany.
J Invertebr Pathol ; 206: 108153, 2024 Jun 10.
Article en En | MEDLINE | ID: mdl-38866297
ABSTRACT
Introduced into Europe from North America 150 years ago alongside its native crayfish hosts, the invasive pathogen Aphanomyces astaci is considered one of the main causes of European crayfish population decline. For the past two centuries, this oomycete pathogen has been extensively studied, with the more recent efforts focused on containing and monitoring its spread across the continent. However, after the recent introduction of new strains, the newly-discovered diversity of A. astaci in North America and several years of coevolution with its European host, a new assessment of the traits linked to the pathogen's virulence is much needed. To fill this gap, we investigated the presence of phenotypic patterns (i.e., in vitro growth and sporulation rates) possibly associated with the pathogen's virulence (i.e., induced mortality in crayfish) in a collection of 14 A. astaci strains isolated both in North America and in Europe. The results highlighted a high variability in virulence, growth rate and motile spore production among the different strains, while the total-sporulation rate was more similar across strains. Surprisingly, growth and sporulation rates were not significantly correlated with virulence. Furthermore, none of the analysed parameters, including virulence, was significantly different among the major A. astaci haplogroups. These results indicate that each strain is defined by a characteristic combination of pathogenic features, specifically assembled for the environment and host faced by each strain. Thus, canonical mitochondrial markers, often used to infer the pathogen's virulence, are not accurate tools to deduce the phenotype of A. astaci strains. As the diversity of A. astaci strains in Europe is bound to increase due to translocations of new carrier crayfish species from North America, there is an urgent need to deepen our understanding of A. astaci's virulence variability and its ability to adapt to new hosts and environments.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: J Invertebr Pathol Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: J Invertebr Pathol Año: 2024 Tipo del documento: Article