Your browser doesn't support javascript.
loading
Open cranium model for the study of cerebrovascular dynamics in intracranial hypertension.
Jaishankar, Rohan; Teichmann, Daniel; Hayward, Alison; Holsapple, James W; Heldt, Thomas.
Afiliación
  • Jaishankar R; Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Electrical Engineering & Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
  • Teichmann D; Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
  • Hayward A; Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
  • Holsapple JW; Department of Neurosurgery, Boston University School of Medicine, Boston, MA 02118, USA.
  • Heldt T; Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Electrical Engineering & Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Electronic address: thomas@mit.edu.
J Neurosci Methods ; 409: 110196, 2024 Sep.
Article en En | MEDLINE | ID: mdl-38880344
ABSTRACT

BACKGROUND:

Significant research has been devoted to developing noninvasive approaches to neuromonitoring. Clinical validation of such approaches is often limited, with minimal data available in the clinically relevant elevated ICP range. NEW

METHOD:

To allow ultrasound-guided placement of an intraventricular catheter and to perform simultaneous long-duration ICP and ultrasound recordings of cerebral blood flow, we developed a large unilateral craniectomy in a swine model. We also used a microprocessor-controlled actuator for intraventricular saline infusion to reliably and reversibly manipulate ICP according to pre-determined profiles.

RESULTS:

The model was reproducible, resulting in over 80 hours of high-fidelity, multi-parameter physiological waveform recordings in twelve animals, with ICP ranging from 2 to 78 mmHg. ICP elevations were reversible and reproducible according to two predetermined profiles a stepwise elevation up to an ICP of 30-35 mmHg and return to normotension, and a clinically significant plateau wave. Finally, ICP was elevated to extreme levels of greater than 60 mmHg, simulating extreme clinical emergency. COMPARISON WITH EXISTING

METHODS:

Existing methods for ICP monitoring in large animals typically relied on burr-hole approaches for catheter placement. Accurate catheter placement can be difficult in pigs, given the thickness of their skull. Additionally, ultrasound is significantly attenuated by the skull. The open cranium model overcomes these limitations.

CONCLUSIONS:

The hemicraniectomy model allowed for verified placement of the intraventricular catheter, and reversible and reliable ICP manipulation over a wide range. The large dural window additionally allowed for long-duration recording of cerebral blood flow velocity from the middle cerebral artery.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Presión Intracraneal / Circulación Cerebrovascular / Hipertensión Intracraneal / Modelos Animales de Enfermedad Límite: Animals Idioma: En Revista: J Neurosci Methods / J. neurosci. methods / Journal of neuroscience methods Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Presión Intracraneal / Circulación Cerebrovascular / Hipertensión Intracraneal / Modelos Animales de Enfermedad Límite: Animals Idioma: En Revista: J Neurosci Methods / J. neurosci. methods / Journal of neuroscience methods Año: 2024 Tipo del documento: Article