Your browser doesn't support javascript.
loading
Energy-saving hydrogen production from sulfion oxidation-hybrid seawater splitting enabled by superwettable corrosion-resistant NiFe layered double hydroxide/FeNi2S4 heterostructured nanoarrays.
Ai, Lunhong; Tian, Yao; Xiao, Tanyang; Zhang, Jiayi; Zhang, Chenghui; Jiang, Jing.
Afiliación
  • Ai L; School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China.
  • Tian Y; School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China; College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
  • Xiao T; School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China.
  • Zhang J; School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China.
  • Zhang C; School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China.
  • Jiang J; School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China. Electronic address: 0826zjjh@163.com.
J Colloid Interface Sci ; 673: 607-615, 2024 Nov.
Article en En | MEDLINE | ID: mdl-38897062
ABSTRACT
Electrochemical seawater splitting is a sustainable pathway towards hydrogen production independent of scarce freshwater resources. However, the high energy consumption and harmful chlorine-chemistry interference still pose major technological challenges. Herein, thermodynamically more favorable sulfion oxidation reaction (SOR) is explored to replace energy-intensive oxygen evolution reaction (OER), enabling the dramatically reduced energy consumption and the avoidance of corrosive chlorine species in electrocatalytic systems of NiFe layered double hydroxide (LDH)/FeNi2S4 grown on iron foam (IF) substrate. The resulting NiFe-LDH/FeNi2S4/IF with superwettable surfaces and favorable heterointerfaces can effectively catalyze SOR and hydrogen evolution reaction (HER), which greatly reduces the operational voltage by 1.05 V at 50 mA cm-2 compared to pure seawater splitting and achieves impressively low electricity consumption of 2.33 kW h per cubic meter of H2 at 100 mA cm-2. Significantly, benefitting from the repulsive effect of surface sulfate anions to Cl-, the NiFe-LDH/FeNi2S4/IF exhibits outstanding long-term stability for SOR-coupled chlorine-free hydrogen production with sulfion upcycling into elemental sulfur. The present study uncovers the "killing two birds with one stone" effect of SOR for energy-efficient hydrogen generation and value-added elemental sulfur recovery in seawater electrolysis without detrimental chlorine chemistry.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: J Colloid Interface Sci Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: J Colloid Interface Sci Año: 2024 Tipo del documento: Article País de afiliación: China