MRNIP limits ssDNA gaps during replication stress.
Nucleic Acids Res
; 52(14): 8320-8331, 2024 Aug 12.
Article
en En
| MEDLINE
| ID: mdl-38917325
ABSTRACT
Replication repriming by the specialized primase-polymerase PRIMPOL ensures the continuity of DNA synthesis during replication stress. PRIMPOL activity generates residual post-replicative single-stranded nascent DNA gaps, which are linked with mutagenesis and chemosensitivity in BRCA1/2-deficient models, and which are suppressed by replication fork reversal mediated by the DNA translocases SMARCAL1 and ZRANB3. Here, we report that the MRE11 regulator MRNIP limits the prevalence of PRIMPOL and MRE11-dependent ssDNA gaps in cells in which fork reversal is perturbed either by treatment with the PARP inhibitor Olaparib, or by depletion of SMARCAL1 or ZRANB3. MRNIP-deficient cells are sensitive to PARP inhibition and accumulate PRIMPOL-dependent DNA damage, supportive of a pro-survival role for MRNIP linked to the regulation of gap prevalence. In MRNIP-deficient cells, post-replicative gap filling is driven in S-phase by UBC13-mediated template switching involving REV1 and the TLS polymerase Pol-ζ. Our findings represent the first report of modulation of post-replicative ssDNA gap dynamics by a direct MRE11 regulator.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
ADN de Cadena Simple
/
ADN Helicasas
/
ADN Primasa
/
ADN Polimerasa Dirigida por ADN
/
Replicación del ADN
/
Proteína Homóloga de MRE11
Límite:
Humans
Idioma:
En
Revista:
Nucleic Acids Res
Año:
2024
Tipo del documento:
Article