An integrated ergonomic risk assessment framework based on fuzzy logic and IVSF-AHP for optimising ergonomic risks in a mixed-model assembly line.
Ergonomics
; : 1-21, 2024 Jul 02.
Article
en En
| MEDLINE
| ID: mdl-38953513
ABSTRACT
This study proposes a systematic approach to address ergonomic factors, including physical, environmental and psychosocial aspects, in solving assembly line balancing problems. A three-stage framework is developed, starting with determining weights for ergonomic risk assessment methods using the interval-valued spherical fuzzy analytical hierarchy process. In the second stage, a fuzzy logic model for integrated ergonomic risk assessment is constructed based on these weights, and the integrated ergonomic risk score is determined. In the third stage, a mathematical model is formulated to minimise the cycle time while balancing the ergonomic risk level. A case study conducted in a wire harness factory validated the effectiveness of the proposed approach, showing a 10-11% improvement in line efficiency and a 12-25% enhancement in ergonomic risk balancing performance. These findings underscore the potential benefits of implementing this approach, which can significantly improve occupational safety and overall performance.
This article presents a practical and systematic approach for enhancing ergonomic conditions in assembly lines. The proposed approach aims to balance the ergonomic risk level while minimising the cycle time by considering physical, environmental and psychosocial risk factors. A case study conducted in a wire harness factory demonstrated significant improvements in balancing ergonomic risks, highlighting the real-world applicability of this research.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Idioma:
En
Revista:
Ergonomics
Año:
2024
Tipo del documento:
Article