Your browser doesn't support javascript.
loading
Electron-vibrational renormalization in fullerenes through ab initio and machine learning methods.
García-Risueño, Pablo; Armengol, Eva; García-Cerdaña, Àngel; García-Lastra, Juan María; Carrasco-Busturia, David.
Afiliación
  • García-Risueño P; Independent scholar, Barcelona, Spain. risueno@unizar.es.
  • Armengol E; Artificial Intelligence Research Institute, (IIIA, CSIC) Carrer de Can Planes, s/n, Campus UAB, 08193 Bellaterra, Catalonia, Spain.
  • García-Cerdaña À; Artificial Intelligence Research Institute, (IIIA, CSIC) Carrer de Can Planes, s/n, Campus UAB, 08193 Bellaterra, Catalonia, Spain.
  • García-Lastra JM; Department of Energy Conversion and Storage, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
  • Carrasco-Busturia D; DTU Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
Phys Chem Chem Phys ; 26(30): 20310-20324, 2024 Jul 31.
Article en En | MEDLINE | ID: mdl-38984472
ABSTRACT
The effect of nuclear vibrations on the electronic eigenvalues and the HOMO-LUMO gap is known for several kinds of carbon-based materials, like diamond, diamondoids, carbon nanoclusters, carbon nanotubes and others, like hydrogen-terminated oligoynes and polyyne. However, it has not been widely analysed in another remarkable kind which presents both theoretical and technological interest fullerenes. In this article we present the study of the HOMO, LUMO and gap renormalizations due to zero-point motion of a relatively large number (163) of fullerenes and fullerene derivatives. We have calculated this renormalization using density-functional theory with the frozen-phonon method, finding that it is non-negligible (above 0.1 eV) for systems with relevant technological applications in photovoltaics and that the strength of the renormalization increases with the size of the gap. In addition, we have applied machine learning methods for classification and regression of the renormalizations, finding that they can be approximately predicted using the output of a computationally cheap ground state calculation. Our conclusions are supported by recent research in other systems.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Phys Chem Chem Phys Asunto de la revista: BIOFISICA / QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: España

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Phys Chem Chem Phys Asunto de la revista: BIOFISICA / QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: España