Your browser doesn't support javascript.
loading
Chronic hyperglycemia aggravates lung function in a Scnn1b-Tg murine model.
Cui, Guiying; Moustafa, Dina A; Zhao, Shilin; Cegla, Analia Vazquez; Lyles, James T; Goldberg, Joanna B; Chandler, Joshua D; McCarty, Nael A.
Afiliación
  • Cui G; Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory + Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, United States.
  • Moustafa DA; Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory + Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, United States.
  • Zhao S; Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, United States.
  • Cegla AV; Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory + Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, United States.
  • Lyles JT; Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory + Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, United States.
  • Goldberg JB; Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory + Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, United States.
  • Chandler JD; Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory + Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, United States.
  • McCarty NA; Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory + Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, United States.
Am J Physiol Lung Cell Mol Physiol ; 327(4): L473-L486, 2024 Oct 01.
Article en En | MEDLINE | ID: mdl-39010826
ABSTRACT
Cystic fibrosis-related diabetes (CFRD), the most common comorbidity in cystic fibrosis (CF), leads to increased mortality by accelerating the decline in lung function. Scnn1b-Tg transgenic mice overexpressing the epithelial sodium channel ß subunit exhibit spontaneous CF-like lung disease, including airway mucus obstruction and chronic inflammation. Here, we established a chronic CFRD-like model using Scnn1b-Tg mice made diabetic by injection of streptozotocin (STZ). In Ussing chamber recordings of the trachea, Scnn1b-Tg mice exhibited larger amiloride-sensitive currents and forskolin-activated currents, without a difference in adenosine triphosphate (ATP)-activated currents compared with wild-type (WT) littermates. Both diabetic WT (WT-D) and diabetic Scnn1b-Tg (Scnn1b-Tg-D) mice on the same genetic background exhibited substantially elevated blood glucose at 8 wk; glucose levels also were elevated in bronchoalveolar lavage fluid (BALF). Bulk lung RNA-seq data showed significant differences between WT-D and Scnn1b-Tg-D mice. Neutrophil counts in BALF were substantially increased in Scnn1b-Tg-D lungs compared with controls (Scnn1b-Tg-con) and compared with WT-D lungs. Lung histology data showed enhanced parenchymal destruction, alveolar wall thickening, and neutrophilic infiltration in Scnn1b-Tg-D mice compared with WT-D mice, consistent with the development of a spontaneous lung infection. We intranasally administered Pseudomonas aeruginosa to induce lung infection in these mice for 24 h, which led to severe lung leukocytic infiltration and an increase in pro-inflammatory cytokine levels in the BALF. In summary, we established a chronic CFRD-like lung mouse model using the Scnn1b-Tg mice. The model can be used for future studies toward understanding the mechanisms underlying the lung pathophysiology associated with CFRD and developing novel therapeutics.NEW & NOTEWORTHY We established a chronic CFRD-like mouse model using the Scnn1b-Tg transgenic mice overexpressing the epithelial sodium channel ß subunit made diabetic by injection of streptozotocin. The results underscore the urgent need to develop novel therapeutics for CF lung disease.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Ratones Transgénicos / Diabetes Mellitus Experimental / Canales Epiteliales de Sodio / Hiperglucemia / Pulmón Límite: Animals Idioma: En Revista: Am J Physiol Lung Cell Mol Physiol Asunto de la revista: BIOLOGIA MOLECULAR / FISIOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Ratones Transgénicos / Diabetes Mellitus Experimental / Canales Epiteliales de Sodio / Hiperglucemia / Pulmón Límite: Animals Idioma: En Revista: Am J Physiol Lung Cell Mol Physiol Asunto de la revista: BIOLOGIA MOLECULAR / FISIOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos