Your browser doesn't support javascript.
loading
Boosting electrochemical oxygen reduction to hydrogen peroxide coupled with organic oxidation.
Sun, Yining; Fan, Kui; Li, Jinze; Wang, Lei; Yang, Yusen; Li, Zhenhua; Shao, Mingfei; Duan, Xue.
Afiliación
  • Sun Y; State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
  • Fan K; State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
  • Li J; State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
  • Wang L; State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
  • Yang Y; State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
  • Li Z; Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, 324000, China.
  • Shao M; State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China. LZH0307@mail.buct.edu.cn.
  • Duan X; Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, 324000, China. LZH0307@mail.buct.edu.cn.
Nat Commun ; 15(1): 6098, 2024 Jul 19.
Article en En | MEDLINE | ID: mdl-39030230
ABSTRACT
The electrochemical oxygen reduction reaction (ORR) to produce hydrogen peroxide (H2O2) is appealing due to its sustainability. However, its efficiency is compromised by the competing 4e- ORR pathway. In this work, we report a hierarchical carbon nanosheet array electrode with a single-atom Ni catalyst synthesized using organic molecule-intercalated layered double hydroxides as precursors. The electrode exhibits excellent 2e- ORR performance under alkaline conditions and achieves H2O2 yield rates of 0.73 mol gcat-1 h-1 in the H-cell and 5.48 mol gcat-1 h-1 in the flow cell, outperforming most reported catalysts. The experimental results show that the Ni atoms selectively adsorb O2, while carbon nanosheets generate reactive hydrogen species, synergistically enhancing H2O2 production. Furthermore, a coupling reaction system integrating the 2e- ORR with ethylene glycol oxidation significantly enhances H2O2 yield rate to 7.30 mol gcat-1 h-1 while producing valuable glycolic acid. Moreover, we convert alkaline electrolyte containing H2O2 directly into the downstream product sodium perborate to reduce the separation cost further. Techno-economic analysis validates the economic viability of this system.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2024 Tipo del documento: Article País de afiliación: China