Your browser doesn't support javascript.
loading
Manganese(III) dominants the mobilization of phosphorus in reducing sediments: Evidence from Aha reservoir, Southwest China.
Chen, Quan; Wang, Jing-Fu; Zhu, Meng-Qiang; Qin, Hai-Bo; Liao, Peng; Lu, Zhi-Tong; Ju, Peng-Cheng; Chen, Jing-An.
Afiliación
  • Chen Q; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guizhou Province Field Scientific Observation and Research Station of Hongfeng Lake Reservoir Ecosystem
  • Wang JF; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guizhou Province Field Scientific Observation and Research Station of Hongfeng Lake Reservoir Ecosystem
  • Zhu MQ; Department of Geology, University of Maryland, College Park, MD 20740, USA.
  • Qin HB; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China.
  • Liao P; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guizhou Province Field Scientific Observation and Research Station of Hongfeng Lake Reservoir Ecosystem
  • Lu ZT; University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Ore Deposit Geochemistry, Chinese Academy of Sciences, Institute of Geochemistry, Guiyang 550081, China.
  • Ju PC; State Key Laboratory of Continental Dynamics and Shaanxi Key Laboratory of Early Life and Environment, Department of Geology, Northwest University, Xi'an 710069, China.
  • Chen JA; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guizhou Province Field Scientific Observation and Research Station of Hongfeng Lake Reservoir Ecosystem
Sci Total Environ ; 954: 176564, 2024 Sep 27.
Article en En | MEDLINE | ID: mdl-39343408
ABSTRACT
Eutrophication has become one of the greatest threats to aquatic ecosystems. The release of phosphorus (P) from sediments exerts a critical role on eutrophication level. Both manganese (Mn) and iron (Fe), sensitive to redox conditions, own strong affinity for P. Numerous works have demonstrated that Fe was a key factor to drive P cycle in sediments. However, the role of Mn on P mobilization remains largely unexplored. Herein, the mechanism of P mobilization driven by Mn were investigated in a seasonal anoxic reservoir. Diffusive gradients in thin films (DGT) results, from both field investigations and laboratory incubations, showed P was synchronously distributed and significantly positive correlated (r2 ≥ 0.40, p < 0.01) with Mn, suggested that P cycle was associated with Mn. X-ray photoelectron spectroscopy (XPS) results showed that in the outer layers at the top 1 cm sediment pellet the contents of Mn and P occurred significantly synchronize changed, while that of Fe remains virtually unchanged when oxygen conditions changed. This demonstrated that Mn is likely to be the key factor affect P cycle. Most importantly, the relative content of Mn(III) changed the most (≈20 %) interpreted that Mn(III) is the key Mn species dominants the P mobilization. Furthermore, Dual-Beam scanning electron microscope (DB-SEM) maps clearly showed the co-enrichment of P and Mn in oxic sediments, confirmed P was mainly hosted by Mn minerals. In contrast, the random distributions and weak or negative correlations between P and Fe implied that P cycle was decouple with Fe, this resulted from that Fe was almost deposited as inert Fe fractions (>99.2 %) in reducing sediments. This study significantly expanded our knowledge on the geochemical behavior of P influenced by Mn in aquatic sediments.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Sci Total Environ Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Sci Total Environ Año: 2024 Tipo del documento: Article