Your browser doesn't support javascript.
loading
Dissimilation of [(13)C]methanol by continuous cultures of Bacillus methanolicus MGA3 at 50 degrees C studied by (13)C NMR and isotope-ratio mass spectrometry.
Pluschkell, Stefanie B; Flickinger, Michael C.
Afiliação
  • Pluschkell SB; BioTechnology Institute and Department of Chemical Engineering and Materials Science1, and BioTechnology Institute and Department of Biochemistry, Molecular Biology and Biophysics2, University of Minnesota, Saint Paul, MN 55108, USA.
  • Flickinger MC; BioTechnology Institute and Department of Chemical Engineering and Materials Science1, and BioTechnology Institute and Department of Biochemistry, Molecular Biology and Biophysics2, University of Minnesota, Saint Paul, MN 55108, USA.
Microbiology (Reading) ; 148(Pt 10): 3223-3233, 2002 Oct.
Article em En | MEDLINE | ID: mdl-12368456
ABSTRACT
Using a continuous culture of Bacillus methanolicus MGA3 limited by 100 mM methanol in the feed and growing at a dilution rate D=0.25 h(-1), transients in dissolved methanol were studied to determine the effects of methanol toxicity and the pathway of methanol dissimilation to CO(2). Steady-state cultures were disturbed by pulses of methanol resulting in a rapid change in concentration of 6.4-12.8 mM. B. methanolicus MGA3 responded to a sudden increase in available methanol by a transient decline in the biomass concentration in the reactor. In most cases the culture returned to steady state between 4 and 12 h after pulse addition. However, at a methanol pulse of 12.8 mM, complete biomass washout occurred and the culture did not return to steady state. Integrating the response curves of the dry biomass concentration over a 12 h time period showed that a methanol pulse can cause an average transient decline in the biomass yield of up to 22%. (13)C NMR experiments using labelled methanol indicated that the transient partial or complete biomass washout was probably caused by toxic accumulation of formaldehyde in the culture. These experiments also showed accumulation of formate, indicating that B. methanolicus possesses formaldehyde dehydrogenase and formate dehydrogenase activity resulting in a methanol dissimilation pathway via formate to CO(2). Studies using isotope-ratio mass spectrometry provided further evidence of a methanol dissimilation pathway via formate. B. methanolicus MGA3, growing continuously under methanol limitation, consumed added formate at a rate of approximately 0.85 mmol l(-1) h(-1). Furthermore, significant accumulation of (13)CO(2) in the reactor exhaust gas was measured in response to a pulse addition of [(13)C]formic acid to the bioreactor. This indicates that B. methanolicus dissimilates methanol carbon to CO(2) in order to detoxify formaldehyde by both a linear pathway to formate and a cyclic mechanism as part of the RuMP pathway.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Temperatura / Bacillus / Isótopos de Carbono / Metanol Idioma: En Revista: Microbiology (Reading) Assunto da revista: MICROBIOLOGIA Ano de publicação: 2002 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Temperatura / Bacillus / Isótopos de Carbono / Metanol Idioma: En Revista: Microbiology (Reading) Assunto da revista: MICROBIOLOGIA Ano de publicação: 2002 Tipo de documento: Article País de afiliação: Estados Unidos