Your browser doesn't support javascript.
loading
A model to predict bladder shapes from changes in bladder and rectal filling.
Lotz, Heidi T; Remeijer, Peter; van Herk, Marcel; Lebesque, Joos V; de Bois, Josien A; Zijp, Lambert J; Moonen, Luc M.
Afiliação
  • Lotz HT; The Netherlands Cancer Institute/Antoni van Leeuwenhoek Huis, Department of Radiotherapy, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
Med Phys ; 31(6): 1415-23, 2004 Jun.
Article em En | MEDLINE | ID: mdl-15259644
ABSTRACT
The purpose of this study is to develop a model that quantifies in three dimensions changes in bladder shape due to changes in bladder and/or rectal volume. The new technique enables us to predict changes in bladder shape over a short period of time, based on known urinary inflow. Shortly prior to the treatment, the patient will be scanned using a cone beam CT scanner (x-ray volume imager) that is integrated with the linear accelerator. After (automated) delineation of the bladder, the model will be used to predict the short-term shape changes of the bladder for the time interval between image acquisition and dose delivery. The model was developed using multiple daily CT scans of the pelvic area of 19 patients. For each patient, the rigid bony structure in follow-up scans was matched to that of the planning CT scan, and the outer bladder and rectal wall were delineated. Each bladder wall was subdivided in 2500 domains. A fixed reference point inside the bladder was used to calculate for each bladder structure a "Mercator-like" 2D scalar map (similar to a height map of the globe), containing the distances from this reference point to each domain on the bladder wall. Subsequently, for all bladder shapes of a patient and for all domains on the wall individually, the distance to the reference point was fitted by a linear function of both bladder and rectal volume. The model uses an existing bladder structure to create a new structure via expansion (or contraction), until the expressed volume is reached. To evaluate the predictive power of the model, the jack-knife method was used. The errors in the fitting procedure depended on the part of the bladder and range from 0 to 0.5 cm (0.2 cm on average). It was found that a volume increase of 150 cc can lead to a displacement up to about 2.5 cm of the cranial part of the bladder. With the model, the uncertainty in the position of the bladder wall can be reduced down to a maximum value of about 0.5 cm in case the bladder volume increase is known. Furthermore, it was found that a change in rectal filling causes a shift of the bladder, while its shape is hardly influenced. In conclusion, we developed a model that describes the bladder shape and position as a function of the bladder volume and the rectal filling. The model accurately describes the complex shape of the bladder as it works on each domain of the bladder separately.
Assuntos
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Bexiga Urinária / Modelos Anatômicos Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Med Phys Ano de publicação: 2004 Tipo de documento: Article País de afiliação: Holanda
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Bexiga Urinária / Modelos Anatômicos Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Med Phys Ano de publicação: 2004 Tipo de documento: Article País de afiliação: Holanda