Your browser doesn't support javascript.
loading
Fabrication of DNA nanowires by orthogonal self-assembly and DNA intercalation on a Au patterned Si/SiO2 surface.
Kobayashi, Katsuaki; Tonegawa, Naoya; Fujii, Sho; Hikida, Jiro; Nozoye, Hisakazu; Tsutsui, Ken; Wada, Yasuo; Chikira, Makoto; Haga, Masa-Aki.
Afiliação
  • Kobayashi K; Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan. mhaga@chem.chuo-u.ac.jp
Langmuir ; 24(22): 13203-11, 2008 Nov 18.
Article em En | MEDLINE | ID: mdl-18939806
ABSTRACT
A novel Ru complex bearing both an acridine group and anchoring phosphonate groups was immobilized on a surface in order to capture double-stranded DNAs (dsDNAs) from solution. At low surface coverage, the atomic force microscopy (AFM) image revealed the "molecular dot" morphology with the height of the Ru complex ( approximately 2.5 nm) on a mica surface, indicating that four phosphonate anchor groups keep the Ru complex in an upright orientation on the surface. Using a dynamic molecular combing method, the DNA capture efficiency of the Ru complex on a mica surface was examined in terms of the effects of the number of molecular dots and surface hydrophobicity. The immobilized surface could capture DNAs; however, the optimal number of molecular dots on the surface as well as the optimal pull-up speed exist to obtain the extended dsDNAs on the surface. Applying this optimal condition to a Au-patterned Si/SiO 2 (Au/SiO 2) surface, the Au electrode was selectively covered with the Ru complex by orthogonal self-assembly of 4-mercaptbutylphosphonic acid (MBPA), followed by the formation of a Zr (4+)-phosphonate layer and the Ru complex. At the same time, the remaining SiO 2 surface was covered with octylphosphonic acid (OPA) by self-assembly. The selective immobilization of the Ru complex only on the Au electrode was identified by time-of-flight secondary-ion mass spectrometry (TOF-SIMS) imaging on the chemically modified Au/SiO 2 surface. The construction of DNA nanowires on the Au/SiO 2 patterned surface was accomplished by the molecular combing method of the selective immobilized Ru complex on Au electrodes. These interconnected nanowires between Au electrodes were used as a scaffold for the modification of Pd nanoparticles on the DNA. Furthermore, Cu metallization was achieved by electroless plating of Cu metal on a priming of Pd nanoparticles on the Pd-covered DNA nanowires. The resulting Cu nanowires showed a metallic behavior with relatively high resistance.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Silício / DNA / Dióxido de Silício / Nanocompostos / Ouro Tipo de estudo: Prognostic_studies Idioma: En Revista: Langmuir Assunto da revista: QUIMICA Ano de publicação: 2008 Tipo de documento: Article País de afiliação: Japão

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Silício / DNA / Dióxido de Silício / Nanocompostos / Ouro Tipo de estudo: Prognostic_studies Idioma: En Revista: Langmuir Assunto da revista: QUIMICA Ano de publicação: 2008 Tipo de documento: Article País de afiliação: Japão