Your browser doesn't support javascript.
loading
Rat model of exercise-induced cardiac hypertrophy: hemodynamic characterization using left ventricular pressure-volume analysis.
Radovits, Tamás; Oláh, Attila; Lux, Árpád; Németh, Balázs Tamás; Hidi, László; Birtalan, Ede; Kellermayer, Dalma; Mátyás, Csaba; Szabó, Gábor; Merkely, Béla.
Afiliação
  • Radovits T; Heart Center, Semmelweis University, Budapest, Hungary. radovitstamas@yahoo.com
Am J Physiol Heart Circ Physiol ; 305(1): H124-34, 2013 Jul 01.
Article em En | MEDLINE | ID: mdl-23645462
ABSTRACT
Long-term exercise training is associated with characteristic structural and functional changes of the myocardium, termed athlete's heart. Several research groups investigated exercise training-induced left ventricular (LV) hypertrophy in animal models; however, only sporadic data exist about detailed hemodynamics. We aimed to provide functional characterization of exercise-induced cardiac hypertrophy in a rat model using the in vivo method of LV pressure-volume (P-V) analysis. After inducing LV hypertrophy by swim training, we assessed LV morphometry by echocardiography and performed LV P-V analysis using a pressure-conductance microcatheter to investigate in vivo cardiac function. Echocardiography showed LV hypertrophy (LV mass index 2.41 ± 0.09 vs. 2.03 ± 0.08 g/kg, P < 0.01), which was confirmed by heart weight data and histomorphometry. Invasive hemodynamic measurements showed unaltered heart rate, arterial pressure, and LV end-diastolic volume along with decreased LV end-systolic volume, thus increased stroke volume and ejection fraction (73.7 ± 0.8 vs. 64.1 ± 1.5%, P < 0.01) in trained versus untrained control rats. The P-V loop-derived sensitive, load-independent contractility indexes, such as slope of end-systolic P-V relationship or preload recruitable stroke work (77.0 ± 6.8 vs. 54.3 ± 4.8 mmHg, P = 0.01) were found to be significantly increased. The observed improvement of ventriculoarterial coupling (0.37 ± 0.02 vs. 0.65 ± 0.08, P < 0.01), along with increased LV stroke work and mechanical efficiency, reflects improved mechanoenergetics of exercise-induced cardiac hypertrophy. Despite the significant hypertrophy, we observed unaltered LV stiffness (slope of end-diastolic P-V relationship 0.043 ± 0.007 vs. 0.040 ± 0.006 mmHg/µl) and improved LV active relaxation (τ 10.1 ± 0.6 vs. 11.9 ± 0.2 ms, P < 0.01). According to our knowledge, this is the first study that provides characterization of functional changes and hemodynamic relations in exercise-induced cardiac hypertrophy.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Volume Sistólico / Função Ventricular Esquerda / Cardiomegalia Induzida por Exercícios Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Animals Idioma: En Revista: Am J Physiol Heart Circ Physiol Assunto da revista: CARDIOLOGIA / FISIOLOGIA Ano de publicação: 2013 Tipo de documento: Article País de afiliação: Hungria

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Volume Sistólico / Função Ventricular Esquerda / Cardiomegalia Induzida por Exercícios Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Animals Idioma: En Revista: Am J Physiol Heart Circ Physiol Assunto da revista: CARDIOLOGIA / FISIOLOGIA Ano de publicação: 2013 Tipo de documento: Article País de afiliação: Hungria