Your browser doesn't support javascript.
loading
Cavity cooling of an ensemble spin system.
Wood, Christopher J; Borneman, Troy W; Cory, David G.
Afiliação
  • Wood CJ; Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada and Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
  • Borneman TW; Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada and Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
  • Cory DG; Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada and Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada and Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada.
Phys Rev Lett ; 112(5): 050501, 2014 Feb 07.
Article em En | MEDLINE | ID: mdl-24580576
ABSTRACT
We describe how sideband cooling techniques may be applied to large spin ensembles in magnetic resonance. Using the Tavis-Cummings model in the presence of a Rabi drive, we solve a Markovian master equation describing the joint spin-cavity dynamics to derive cooling rates as a function of ensemble size. Our calculations indicate that the coupled angular momentum subspaces of a spin ensemble containing roughly 10(11) electron spins may be polarized in a time many orders of magnitude shorter than the typical thermal relaxation time. The described techniques should permit efficient removal of entropy for spin-based quantum information processors and fast polarization of spin samples. The proposed application of a standard technique in quantum optics to magnetic resonance also serves to reinforce the connection between the two fields, which has recently begun to be explored in further detail due to the development of hybrid designs for manufacturing noise-resilient quantum devices.
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Phys Rev Lett Ano de publicação: 2014 Tipo de documento: Article País de afiliação: Canadá
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Phys Rev Lett Ano de publicação: 2014 Tipo de documento: Article País de afiliação: Canadá