Your browser doesn't support javascript.
loading
The novel α7ß2-nicotinic acetylcholine receptor subtype is expressed in mouse and human basal forebrain: biochemical and pharmacological characterization.
Moretti, Milena; Zoli, Michele; George, Andrew A; Lukas, Ronald J; Pistillo, Francesco; Maskos, Uwe; Whiteaker, Paul; Gotti, Cecilia.
Afiliação
  • Moretti M; CNR Institute of Neuroscience, Biometra University of Milan, Milan, Italy (M.M., F.P., C.G.); Section of Physiology and Neurosciences, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy (M.Z.); Division of Neurobiology, Barrow Neurologic I
  • Zoli M; CNR Institute of Neuroscience, Biometra University of Milan, Milan, Italy (M.M., F.P., C.G.); Section of Physiology and Neurosciences, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy (M.Z.); Division of Neurobiology, Barrow Neurologic I
  • George AA; CNR Institute of Neuroscience, Biometra University of Milan, Milan, Italy (M.M., F.P., C.G.); Section of Physiology and Neurosciences, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy (M.Z.); Division of Neurobiology, Barrow Neurologic I
  • Lukas RJ; CNR Institute of Neuroscience, Biometra University of Milan, Milan, Italy (M.M., F.P., C.G.); Section of Physiology and Neurosciences, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy (M.Z.); Division of Neurobiology, Barrow Neurologic I
  • Pistillo F; CNR Institute of Neuroscience, Biometra University of Milan, Milan, Italy (M.M., F.P., C.G.); Section of Physiology and Neurosciences, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy (M.Z.); Division of Neurobiology, Barrow Neurologic I
  • Maskos U; CNR Institute of Neuroscience, Biometra University of Milan, Milan, Italy (M.M., F.P., C.G.); Section of Physiology and Neurosciences, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy (M.Z.); Division of Neurobiology, Barrow Neurologic I
  • Whiteaker P; CNR Institute of Neuroscience, Biometra University of Milan, Milan, Italy (M.M., F.P., C.G.); Section of Physiology and Neurosciences, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy (M.Z.); Division of Neurobiology, Barrow Neurologic I
  • Gotti C; CNR Institute of Neuroscience, Biometra University of Milan, Milan, Italy (M.M., F.P., C.G.); Section of Physiology and Neurosciences, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy (M.Z.); Division of Neurobiology, Barrow Neurologic I
Mol Pharmacol ; 86(3): 306-17, 2014 Sep.
Article em En | MEDLINE | ID: mdl-25002271
ABSTRACT
We examined α7ß2-nicotinic acetylcholine receptor (α7ß2-nAChR) expression in mammalian brain and compared pharmacological profiles of homomeric α7-nAChRs and α7ß2-nAChRs. α-Bungarotoxin affinity purification or immunoprecipitation with anti-α7 subunit antibodies (Abs) was used to isolate nAChRs containing α7 subunits from mouse or human brain samples. α7ß2-nAChRs were detected in forebrain, but not other tested regions, from both species, based on Western blot analysis of isolates using ß2 subunit-specific Abs. Ab specificity was confirmed in control studies using subunit-null mutant mice or cell lines heterologously expressing specific human nAChR subtypes and subunits. Functional expression in Xenopus oocytes of concatenated pentameric (α7)5-, (α7)4(ß2)1-, and (α7)3(ß2)2-nAChRs was confirmed using two-electrode voltage clamp recording of responses to nicotinic ligands. Importantly, pharmacological profiles were indistinguishable for concatenated (α7)5-nAChRs or for homomeric α7-nAChRs constituted from unlinked α7 subunits. Pharmacological profiles were similar for (α7)5-, (α7)4(ß2)1-, and (α7)3(ß2)2-nAChRs except for diminished efficacy of nicotine (normalized to acetylcholine efficacy) at α7ß2- versus α7-nAChRs. This study represents the first direct confirmation of α7ß2-nAChR expression in human and mouse forebrain, supporting previous mouse studies that suggested relevance of α7ß2-nAChRs in Alzheimer disease etiopathogenesis. These data also indicate that α7ß2-nAChR subunit isoforms with different α7/ß2 subunit ratios have similar pharmacological profiles to each other and to α7 homopentameric nAChRs. This supports the hypothesis that α7ß2-nAChR agonist activation predominantly or entirely reflects binding to α7/α7 subunit interface sites.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Receptores Nicotínicos / Prosencéfalo / Receptor Nicotínico de Acetilcolina alfa7 Limite: Animals / Female / Humans / Male Idioma: En Revista: Mol Pharmacol Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Receptores Nicotínicos / Prosencéfalo / Receptor Nicotínico de Acetilcolina alfa7 Limite: Animals / Female / Humans / Male Idioma: En Revista: Mol Pharmacol Ano de publicação: 2014 Tipo de documento: Article