Your browser doesn't support javascript.
loading
Magneto-fluorescent core-shell supernanoparticles.
Chen, Ou; Riedemann, Lars; Etoc, Fred; Herrmann, Hendrik; Coppey, Mathieu; Barch, Mariya; Farrar, Christian T; Zhao, Jing; Bruns, Oliver T; Wei, He; Guo, Peng; Cui, Jian; Jensen, Russ; Chen, Yue; Harris, Daniel K; Cordero, Jose M; Wang, Zhongwu; Jasanoff, Alan; Fukumura, Dai; Reimer, Rudolph; Dahan, Maxime; Jain, Rakesh K; Bawendi, Moungi G.
Afiliação
  • Chen O; Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
  • Riedemann L; Massachusetts General Hospital and Harvard Medical School, 100 Blossom Street, Boston, Massachusetts 02114, USA.
  • Etoc F; Laboratoire Physico-Chimie Curie, Institut Curie, CNRS UMR168, 75248 Paris, France.
  • Herrmann H; 1] Heinrich-Pette-Institute, Martinistrasse 52, 20251 Hamburg, Germany [2] Bernhard-Nocht-Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, 20359 Hamburg, Germany.
  • Coppey M; Laboratoire Physico-Chimie Curie, Institut Curie, CNRS UMR168, 75248 Paris, France.
  • Barch M; Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
  • Farrar CT; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA.
  • Zhao J; Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
  • Bruns OT; Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
  • Wei H; Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
  • Guo P; Vascular Biology Program, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, USA.
  • Cui J; Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
  • Jensen R; Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
  • Chen Y; Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
  • Harris DK; Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
  • Cordero JM; Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
  • Wang Z; Cornell High Energy Synchrotron Source (CHESS), Wilson Laboratory, Cornell University, Ithaca, New York 14853, USA.
  • Jasanoff A; 1] Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA [2] Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA [3] Departm
  • Fukumura D; Massachusetts General Hospital and Harvard Medical School, 100 Blossom Street, Boston, Massachusetts 02114, USA.
  • Reimer R; Heinrich-Pette-Institute, Martinistrasse 52, 20251 Hamburg, Germany.
  • Dahan M; Laboratoire Physico-Chimie Curie, Institut Curie, CNRS UMR168, 75248 Paris, France.
  • Jain RK; Massachusetts General Hospital and Harvard Medical School, 100 Blossom Street, Boston, Massachusetts 02114, USA.
  • Bawendi MG; Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
Nat Commun ; 5: 5093, 2014 Oct 09.
Article em En | MEDLINE | ID: mdl-25298155
ABSTRACT
Magneto-fluorescent particles have been recognized as an emerging class of materials that exhibit great potential in advanced applications. However, synthesizing such magneto-fluorescent nanomaterials that simultaneously exhibit uniform and tunable sizes, high magnetic content loading, maximized fluorophore coverage at the surface and a versatile surface functionality has proven challenging. Here we report a simple approach for co-assembling magnetic nanoparticles with fluorescent quantum dots to form colloidal magneto-fluorescent supernanoparticles. Importantly, these supernanoparticles exhibit a superstructure consisting of a close-packed magnetic nanoparticle 'core', which is fully surrounded by a 'shell' of fluorescent quantum dots. A thin layer of silica coating provides high colloidal stability and biocompatibility, and a versatile surface functionality. We demonstrate that after surface pegylation, these silica-coated magneto-fluorescent supernanoparticles can be magnetically manipulated inside living cells while being optically tracked. Moreover, our silica-coated magneto-fluorescent supernanoparticles can also serve as an in vivo multi-photon and magnetic resonance dual-modal imaging probe.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Imageamento por Ressonância Magnética / Pontos Quânticos / Nanopartículas de Magnetita / Corantes Fluorescentes Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2014 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Imageamento por Ressonância Magnética / Pontos Quânticos / Nanopartículas de Magnetita / Corantes Fluorescentes Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2014 Tipo de documento: Article País de afiliação: Estados Unidos