Your browser doesn't support javascript.
loading
Early osteoinductive human bone marrow mesenchymal stromal/stem cells support an enhanced hematopoietic cell expansion with altered chemotaxis- and adhesion-related gene expression profiles.
Sugino, Noriko; Miura, Yasuo; Yao, Hisayuki; Iwasa, Masaki; Fujishiro, Aya; Fujii, Sumie; Hirai, Hideyo; Takaori-Kondo, Akifumi; Ichinohe, Tatsuo; Maekawa, Taira.
Afiliação
  • Sugino N; Department of Hematology/Oncology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto 606-8507, Japan.
  • Miura Y; Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto 606-8507, Japan. Electronic address: ym58f5@kuhp.kyoto-u.ac.jp.
  • Yao H; Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto 606-8507, Japan.
  • Iwasa M; Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto 606-8507, Japan; Division of Gastroenterology and Hematology, Shiga University of Medical Science, Shiga 520-2192, Japan.
  • Fujishiro A; Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto 606-8507, Japan; Division of Gastroenterology and Hematology, Shiga University of Medical Science, Shiga 520-2192, Japan.
  • Fujii S; Department of Hematology/Oncology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto 606-8507, Japan.
  • Hirai H; Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto 606-8507, Japan.
  • Takaori-Kondo A; Department of Hematology/Oncology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan.
  • Ichinohe T; Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan.
  • Maekawa T; Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto 606-8507, Japan.
Biochem Biophys Res Commun ; 469(4): 823-9, 2016 Jan 22.
Article em En | MEDLINE | ID: mdl-26707642
ABSTRACT
Bone marrow (BM) microenvironment has a crucial role in supporting hematopoiesis. Here, by using a microarray analysis, we demonstrate that human BM mesenchymal stromal/stem cells (MSCs) in an early osteoinductive stage (e-MSCs) are characterized by unique hematopoiesis-associated gene expression with an enhanced hematopoiesis-supportive ability. In comparison to BM-MSCs without osteoinductive treatment, gene expression in e-MSCs was significantly altered in terms of their cell adhesion- and chemotaxis-related profiles, as identified with Gene Ontology and Gene Set Enrichment Analysis. Noteworthy, expression of the hematopoiesis-associated molecules CXCL12 and vascular cell adhesion molecule 1 was remarkably decreased in e-MSCs. e-MSCs supported an enhanced expansion of CD34(+) hematopoietic stem and progenitor cells, and generation of myeloid lineage cells in vitro. In addition, short-term osteoinductive treatment favored in vivo hematopoietic recovery in lethally irradiated mice that underwent BM transplantation. e-MSCs exhibited the absence of decreased stemness-associated gene expression, increased osteogenesis-associated gene expression, and apparent mineralization, thus maintaining the ability to differentiate into adipogenic cells. Our findings demonstrate the unique biological characteristics of e-MSCs as hematopoiesis-regulatory stromal cells at differentiation stage between MSCs and osteoprogenitor cells and have significant implications in developing new strategy for using pharmacological osteoinductive treatment to support hematopoiesis in hematopoietic stem and progenitor cell transplantation.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Osteoblastos / Osteogênese / Células-Tronco Hematopoéticas / Células-Tronco Mesenquimais Tipo de estudo: Prognostic_studies Limite: Animals / Female / Humans Idioma: En Revista: Biochem Biophys Res Commun Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Japão

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Osteoblastos / Osteogênese / Células-Tronco Hematopoéticas / Células-Tronco Mesenquimais Tipo de estudo: Prognostic_studies Limite: Animals / Female / Humans Idioma: En Revista: Biochem Biophys Res Commun Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Japão