Your browser doesn't support javascript.
loading
Nonparametric analysis of nonexponential and multidimensional kinetics. I. Quantifying rate dispersion, rate heterogeneity, and exchange dynamics.
Berg, Mark A; Kaur, Harveen.
Afiliação
  • Berg MA; Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA.
  • Kaur H; Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA.
J Chem Phys ; 146(5): 054104, 2017 Feb 07.
Article em En | MEDLINE | ID: mdl-28178787
ABSTRACT
The quantification of nonexponential (dispersed) kinetics has relied on empirical functions, which yield parameters that are neither unique nor easily related to the underlying mechanism. Multidimensional kinetics provide more information on dispersed processes, but a good approach to their analysis is even less clear than for standard, one-dimensional kinetics. This paper is the first in a series that analyzes kinetic data in one or many dimensions with a scheme that is nonparametric it quantifies nonexponential decays without relying on a specific functional form. The quantities obtained are directly related to properties of the mechanism causing the rate dispersion. Log-moments of decays, which parallel the standard moments of distributions (mean, standard deviation, etc.), are introduced for both one- and multi-dimensional decays. Kinetic spectra are defined to visualize the data. The utility of this approach is demonstrated on a simple, but general, model of dispersed kinetics-a nonexponential homogeneous decay combined with slowly exchanging rate heterogeneity. The first log-moments give a geometric-mean relaxation time. Second log-moments quantify the magnitude of rate dispersion, the fraction of the dispersion due to heterogeneity, and the dynamics of exchange between different rate subensembles. A suitable combination of these moments isolates exchange dynamics from three-dimensional kinetics without contamination by the rate-filtering effects that were identified in a recent paper [M. A. Berg and J. R. Darvin, J. Chem. Phys. 145, 054119 (2016)].

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Chem Phys Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Chem Phys Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Estados Unidos