Your browser doesn't support javascript.
loading
Transmembrane helices containing a charged arginine are thermodynamically stable.
Ulmschneider, Martin B; Ulmschneider, Jakob P; Freites, J Alfredo; von Heijne, Gunnar; Tobias, Douglas J; White, Stephen H.
Afiliação
  • Ulmschneider MB; Institute for NanoBioTechnology and Department of Materials Science, Johns Hopkins University, Baltimore, MD, 21218, USA.
  • Ulmschneider JP; Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China.
  • Freites JA; Department of Chemistry and the Center for Biomembrane Systems, University of California, Irvine, CA, 92697-2025, USA.
  • von Heijne G; Department of Biochemistry and Biophysics, Stockholm University, SE-106 91, Stockholm, Sweden.
  • Tobias DJ; Department of Chemistry and the Center for Biomembrane Systems, University of California, Irvine, CA, 92697-2025, USA.
  • White SH; Department of Physiology and Biophysics and the Center for Biomembrane Systems, University of California, Irvine, CA, 92697-4560, USA. stephen.white@uci.edu.
Eur Biophys J ; 46(7): 627-637, 2017 Oct.
Article em En | MEDLINE | ID: mdl-28409218
ABSTRACT
Hydrophobic amino acids are abundant in transmembrane (TM) helices of membrane proteins. Charged residues are sparse, apparently due to the unfavorable energetic cost of partitioning charges into nonpolar phases. Nevertheless, conserved arginine residues within TM helices regulate vital functions, such as ion channel voltage gating and integrin receptor inactivation. The energetic cost of arginine in various positions along hydrophobic helices has been controversial. Potential of mean force (PMF) calculations from atomistic molecular dynamics simulations predict very large energetic penalties, while in vitro experiments with Sec61 translocons indicate much smaller penalties, even for arginine in the center of hydrophobic TM helices. Resolution of this conflict has proved difficult, because the in vitro assay utilizes the complex Sec61 translocon, while the PMF calculations rely on the choice of simulation system and reaction coordinate. Here we present the results of computational and experimental studies that permit direct comparison with the Sec61 translocon results. We find that the Sec61 translocon mediates less efficient membrane insertion of Arg-containing TM helices compared with our computational and experimental bilayer-insertion results. In the simulations, a combination of arginine snorkeling, bilayer deformation, and peptide tilting is sufficient to lower the penalty of Arg insertion to an extent such that a hydrophobic TM helix with a central Arg residue readily inserts into a model membrane. Less favorable insertion by the translocon may be due to the decreased fluidity of the endoplasmic reticulum (ER) membrane compared with pure palmitoyloleoyl-phosphocholine (POPC). Nevertheless, our results provide an explanation for the differences between PMF- and experiment-based penalties for Arg burial.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Arginina / Simulação de Dinâmica Molecular / Bicamadas Lipídicas / Proteínas de Membrana Tipo de estudo: Prognostic_studies Idioma: En Revista: Eur Biophys J Assunto da revista: BIOFISICA Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Arginina / Simulação de Dinâmica Molecular / Bicamadas Lipídicas / Proteínas de Membrana Tipo de estudo: Prognostic_studies Idioma: En Revista: Eur Biophys J Assunto da revista: BIOFISICA Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Estados Unidos