Your browser doesn't support javascript.
loading
TRP channels in oxygen physiology: distinctive functional properties and roles of TRPA1 in O2 sensing.
Mori, Yasuo; Takahashi, Nobuaki; Kurokawa, Tatsuki; Kiyonaka, Shigeki.
Afiliação
  • Mori Y; Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University.
  • Takahashi N; Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University.
  • Kurokawa T; Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University.
  • Kiyonaka S; Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University.
Proc Jpn Acad Ser B Phys Biol Sci ; 93(7): 464-482, 2017.
Article em En | MEDLINE | ID: mdl-28769017
ABSTRACT
Transient Receptor Potential (TRP) proteins form cation channels characterized by a wide variety of activation triggers. Here, we overview a group of TRP channels that respond to reactive redox species to transduce physiological signals, with a focus on TRPA1 and its role in oxygen physiology. Our systematic evaluation of oxidation sensitivity using cysteine-selective reactive disulphides with different redox potentials reveals that TRPA1 has the highest sensitivity to oxidants/electrophiles among the TRP channels, which enables it to sense O2. Proline hydroxylation by O2-dependent hydroxylases also regulates the O2-sensing function by inhibiting TRPA1 in normoxia; TRPA1 is activated by hypoxia through relief from the inhibition and by hyperoxia through cysteine oxidation that overrides the inhibition. TRPA1 enhances neuronal discharges induced by hyperoxia and hypoxia in the vagus to underlie respiratory adaptation to changes in O2 availability. This importance of TRPA1 in non-carotid body O2 sensors can be extended to the universal significance of redox-sensitive TRP channels in O2 adaptation.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oxigênio / Canal de Cátion TRPA1 Limite: Animals / Humans Idioma: En Revista: Proc Jpn Acad Ser B Phys Biol Sci Assunto da revista: BIOLOGIA / FISIOLOGIA Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oxigênio / Canal de Cátion TRPA1 Limite: Animals / Humans Idioma: En Revista: Proc Jpn Acad Ser B Phys Biol Sci Assunto da revista: BIOLOGIA / FISIOLOGIA Ano de publicação: 2017 Tipo de documento: Article