Your browser doesn't support javascript.
loading
Structure and electronic states of a graphene double vacancy with an embedded Si dopant.
Nieman, Reed; Aquino, Adélia J A; Hardcastle, Trevor P; Kotakoski, Jani; Susi, Toma; Lischka, Hans.
Afiliação
  • Nieman R; Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, USA.
  • Aquino AJA; Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, USA.
  • Hardcastle TP; SuperSTEM Laboratory, STFC Daresbury Campus, Daresbury WA4 4AD, United Kingdom.
  • Kotakoski J; Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria.
  • Susi T; Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria.
  • Lischka H; Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, USA.
J Chem Phys ; 147(19): 194702, 2017 Nov 21.
Article em En | MEDLINE | ID: mdl-29166094
ABSTRACT
Silicon represents a common intrinsic impurity in graphene, bonding to either three or four carbon neighbors, respectively, in a single or double carbon vacancy. We investigate the effect of the latter defect (Si-C4) on the structural and electronic properties of graphene using density functional theory. Calculations based both on molecular models and with periodic boundary conditions have been performed. The two-carbon vacancy was constructed from pyrene (pyrene-2C) which was then expanded to circumpyrene-2C. The structural characterization of these cases revealed that the ground state is slightly non-planar, with the bonding carbons displaced from the plane by up to ±0.2 Å. This non-planar structure was confirmed by embedding the defect into a 10 × 8 supercell of graphene, resulting in 0.22 eV lower energy than the previously considered planar structure. Natural bond orbital analysis showed sp3 hybridization at the silicon atom for the non-planar structure and sp2d hybridization for the planar structure. Atomically resolved electron energy loss spectroscopy and corresponding spectrum simulations provide a mixed picture a flat structure provides a slightly better overall spectrum match, but a small observed pre-peak is only present in the corrugated simulation. Considering the small energy barrier between the two equivalent corrugated conformations, both structures could plausibly exist as a superposition over the experimental time scale of seconds.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Chem Phys Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Chem Phys Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Estados Unidos