Your browser doesn't support javascript.
loading
Novel Role of IL (Interleukin)-1ß in Neutrophil Extracellular Trap Formation and Abdominal Aortic Aneurysms.
Meher, Akshaya K; Spinosa, Michael; Davis, John P; Pope, Nicolas; Laubach, Victor E; Su, Gang; Serbulea, Vlad; Leitinger, Norbert; Ailawadi, Gorav; Upchurch, Gilbert R.
Afiliação
  • Meher AK; From the Department of Surgery (A.K.M., M.S., J.P.D., N.P., V.E.L., G.S., G.A., G.R.U.), Department of Pharmacology (A.K.M., V.S., N.L.), Robert M. Berne Cardiovascular Research Center (A.K.M., N.L., G.A., G.R.U.), Department of Molecular Physiology and Biological Physics (G.R.U.), and Department of
  • Spinosa M; From the Department of Surgery (A.K.M., M.S., J.P.D., N.P., V.E.L., G.S., G.A., G.R.U.), Department of Pharmacology (A.K.M., V.S., N.L.), Robert M. Berne Cardiovascular Research Center (A.K.M., N.L., G.A., G.R.U.), Department of Molecular Physiology and Biological Physics (G.R.U.), and Department of
  • Davis JP; From the Department of Surgery (A.K.M., M.S., J.P.D., N.P., V.E.L., G.S., G.A., G.R.U.), Department of Pharmacology (A.K.M., V.S., N.L.), Robert M. Berne Cardiovascular Research Center (A.K.M., N.L., G.A., G.R.U.), Department of Molecular Physiology and Biological Physics (G.R.U.), and Department of
  • Pope N; From the Department of Surgery (A.K.M., M.S., J.P.D., N.P., V.E.L., G.S., G.A., G.R.U.), Department of Pharmacology (A.K.M., V.S., N.L.), Robert M. Berne Cardiovascular Research Center (A.K.M., N.L., G.A., G.R.U.), Department of Molecular Physiology and Biological Physics (G.R.U.), and Department of
  • Laubach VE; From the Department of Surgery (A.K.M., M.S., J.P.D., N.P., V.E.L., G.S., G.A., G.R.U.), Department of Pharmacology (A.K.M., V.S., N.L.), Robert M. Berne Cardiovascular Research Center (A.K.M., N.L., G.A., G.R.U.), Department of Molecular Physiology and Biological Physics (G.R.U.), and Department of
  • Su G; From the Department of Surgery (A.K.M., M.S., J.P.D., N.P., V.E.L., G.S., G.A., G.R.U.), Department of Pharmacology (A.K.M., V.S., N.L.), Robert M. Berne Cardiovascular Research Center (A.K.M., N.L., G.A., G.R.U.), Department of Molecular Physiology and Biological Physics (G.R.U.), and Department of
  • Serbulea V; From the Department of Surgery (A.K.M., M.S., J.P.D., N.P., V.E.L., G.S., G.A., G.R.U.), Department of Pharmacology (A.K.M., V.S., N.L.), Robert M. Berne Cardiovascular Research Center (A.K.M., N.L., G.A., G.R.U.), Department of Molecular Physiology and Biological Physics (G.R.U.), and Department of
  • Leitinger N; From the Department of Surgery (A.K.M., M.S., J.P.D., N.P., V.E.L., G.S., G.A., G.R.U.), Department of Pharmacology (A.K.M., V.S., N.L.), Robert M. Berne Cardiovascular Research Center (A.K.M., N.L., G.A., G.R.U.), Department of Molecular Physiology and Biological Physics (G.R.U.), and Department of
  • Ailawadi G; From the Department of Surgery (A.K.M., M.S., J.P.D., N.P., V.E.L., G.S., G.A., G.R.U.), Department of Pharmacology (A.K.M., V.S., N.L.), Robert M. Berne Cardiovascular Research Center (A.K.M., N.L., G.A., G.R.U.), Department of Molecular Physiology and Biological Physics (G.R.U.), and Department of
  • Upchurch GR; From the Department of Surgery (A.K.M., M.S., J.P.D., N.P., V.E.L., G.S., G.A., G.R.U.), Department of Pharmacology (A.K.M., V.S., N.L.), Robert M. Berne Cardiovascular Research Center (A.K.M., N.L., G.A., G.R.U.), Department of Molecular Physiology and Biological Physics (G.R.U.), and Department of
Arterioscler Thromb Vasc Biol ; 38(4): 843-853, 2018 04.
Article em En | MEDLINE | ID: mdl-29472233
ABSTRACT

OBJECTIVE:

Neutrophils promote experimental abdominal aortic aneurysm (AAA) formation via a mechanism that is independent from MMPs (matrix metalloproteinases). Recently, we reported a dominant role of IL (interleukin)-1ß in the formation of murine experimental AAAs. Here, the hypothesis that IL-1ß-induced neutrophil extracellular trap formation (NETosis) promotes AAA was tested. APPROACH AND

RESULTS:

NETs were identified through colocalized staining of neutrophil, Cit-H3 (citrullinated histone H3), and DNA, using immunohistochemistry. NETs were detected in human AAAs and were colocalized with IL-1ß. In vitro, IL-1RA attenuated IL-1ß-induced NETosis in human neutrophils. Mechanistically, IL-1ß treatment of isolated neutrophils induced nuclear localization of ceramide synthase 6 and synthesis of C16-ceramide, which was inhibited by IL-1RA or fumonisin B1, an inhibitor of ceramide synthesis. Furthermore, IL-1RA or fumonisin B1 attenuated IL1-ß-induced NETosis. In an experimental model of murine AAA, NETs were detected at a very early stage-day 3 of aneurysm induction. IL-1ß-knockout mice demonstrated significantly lower infiltration of neutrophils to aorta and were protected from AAA. Adoptive transfer of wild-type neutrophils promoted AAA formation in IL-1ß-knockout mice. Moreover, treatment of wild-type mice with Cl-amidine, an inhibitor NETosis, significantly attenuated AAA formation, whereas, treatment with deoxyribonuclease, a DNA digesting enzyme, had no effect on AAA formation.

CONCLUSIONS:

Altogether, the results suggest a dominant role of IL-1ß-induced NETosis in AAA formation.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Aorta Abdominal / Aneurisma da Aorta Abdominal / Interleucina-1beta / Armadilhas Extracelulares / Neutrófilos Limite: Animals / Humans Idioma: En Revista: Arterioscler Thromb Vasc Biol Assunto da revista: ANGIOLOGIA Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Aorta Abdominal / Aneurisma da Aorta Abdominal / Interleucina-1beta / Armadilhas Extracelulares / Neutrófilos Limite: Animals / Humans Idioma: En Revista: Arterioscler Thromb Vasc Biol Assunto da revista: ANGIOLOGIA Ano de publicação: 2018 Tipo de documento: Article