Your browser doesn't support javascript.
loading
Unravelling the enigma of ligninOX: can the oxidation of lignin be controlled?
Guo, Haiwei; Miles-Barrett, Daniel M; Neal, Andrew R; Zhang, Tao; Li, Changzhi; Westwood, Nicholas J.
Afiliação
  • Guo H; School of Chemistry and Biomedical Sciences Research Complex , University of St. Andrews , EaStCHEM , St. Andrews , Fife , Scotland KY16 9ST , UK . Email: njw3@st-andrews.ac.uk.
  • Miles-Barrett DM; State Key Laboratory of Catalysis , Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian , 116023 , China . Email: licz@dicp.ac.cn.
  • Neal AR; University of Chinese Academy of Sciences , Beijing , 100049 , China.
  • Zhang T; School of Chemistry and Biomedical Sciences Research Complex , University of St. Andrews , EaStCHEM , St. Andrews , Fife , Scotland KY16 9ST , UK . Email: njw3@st-andrews.ac.uk.
  • Li C; School of Chemistry and Biomedical Sciences Research Complex , University of St. Andrews , EaStCHEM , St. Andrews , Fife , Scotland KY16 9ST , UK . Email: njw3@st-andrews.ac.uk.
  • Westwood NJ; State Key Laboratory of Catalysis , Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian , 116023 , China . Email: licz@dicp.ac.cn.
Chem Sci ; 9(3): 702-711, 2018 Jan 21.
Article em En | MEDLINE | ID: mdl-29629139
ABSTRACT
As societal challenges go, the development of efficient biorefineries as a means of reducing our dependence on petroleum refineries is high on the list. One of the core strengths of the petroleum refinery is its ability to produce a huge range of different products using all of the components of the starting material. In contrast, the target of using all the biopolymers present in lignocellulosic biomass is far from realised. Even though our ability to use the carbohydrate-based components has advanced, our plans for lignin lag behind (with the notable exception of vanillin production). One approach to lignin usage is its controlled depolymerisation. This study focuses on an increasingly popular approach to this challenge which involves highly selective lignin oxidation to give a material often referred to as ligninOX. But what do we mean by ligninOX? In this study we show that it is possible to form many different types of ligninOX depending on the oxidation conditions that are used. We show that variations in the levels of processing of the ß-O-4, the ß-ß and a third linkage occur. Through use of this information, we can form a well-defined ligninOX from six different hardwood lignins. This process is reproducible and can be carried out on a large scale. With a source of well-defined ligninOX in hand, we show that it can be converted to simple aromatic monomers and that any remaining ligninOX is sufficiently soluble for further processing to be carried out.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Chem Sci Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Chem Sci Ano de publicação: 2018 Tipo de documento: Article