Your browser doesn't support javascript.
loading
Inhibition of protein arginine methyltransferase 5 enhances hepatic mitochondrial biogenesis.
Huang, Lei; Liu, Jehnan; Zhang, Xiao-Ou; Sibley, Katelyn; Najjar, Sonia M; Lee, Mary M; Wu, Qiong.
Afiliação
  • Huang L; From the Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts 01655.
  • Liu J; the Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio 43606.
  • Zhang XO; the Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655.
  • Sibley K; the Department of Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, and.
  • Najjar SM; the Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio 43606.
  • Lee MM; the Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701.
  • Wu Q; From the Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts 01655, mary.lee@umassmemorial.org.
J Biol Chem ; 293(28): 10884-10894, 2018 07 13.
Article em En | MEDLINE | ID: mdl-29773653
ABSTRACT
Protein arginine methyltransferase 5 (PRMT5) regulates gene expression either transcriptionally by symmetric dimethylation of arginine residues on histones H4R3, H3R8, and H2AR3 or at the posttranslational level by methylation of nonhistone target proteins. Although emerging evidence suggests that PRMT5 functions as an oncogene, its role in metabolic diseases is not well-defined. We investigated the role of PRMT5 in promoting high-fat-induced hepatic steatosis. A high-fat diet up-regulated PRMT5 levels in the liver but not in other metabolically relevant tissues such as skeletal muscle or white and brown adipose tissue. This was associated with repression of master transcription regulators involved in mitochondrial biogenesis. In contrast, lentiviral short hairpin RNA-mediated reduction of PRMT5 significantly decreased phosphatidylinositol 3-kinase/AKT signaling in mouse AML12 liver cells. PRMT5 knockdown or knockout decreased basal AKT phosphorylation but boosted the expression of peroxisome proliferator-activated receptor α (PPARα) and PGC-1α with a concomitant increase in mitochondrial biogenesis. Moreover, by overexpressing an exogenous WT or enzyme-dead mutant PRMT5 or by inhibiting PRMT5 enzymatic activity with a small-molecule inhibitor, we demonstrated that the enzymatic activity of PRMT5 is required for regulation of PPARα and PGC-1α expression and mitochondrial biogenesis. Our results suggest that targeting PRMT5 may have therapeutic potential for the treatment of fatty liver.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteína-Arginina N-Metiltransferases / Biogênese de Organelas / PPAR alfa / Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo / Fígado / Mitocôndrias Limite: Animals Idioma: En Revista: J Biol Chem Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteína-Arginina N-Metiltransferases / Biogênese de Organelas / PPAR alfa / Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo / Fígado / Mitocôndrias Limite: Animals Idioma: En Revista: J Biol Chem Ano de publicação: 2018 Tipo de documento: Article