Your browser doesn't support javascript.
loading
A TCM formula comprising Sophorae Flos and Lonicerae Japonicae Flos alters compositions of immune cells and molecules of the STAT3 pathway in melanoma microenvironment.
Liu, Yu-Xi; Bai, Jing-Xuan; Li, Ting; Fu, Xiu-Qiong; Guo, Hui; Zhu, Pei-Li; Chan, Yuen-Cheung; Chou, Ji-Yao; Yin, Cheng-Le; Li, Jun-Kui; Wang, Ya-Ping; Chen, Ying-Jie; Yu, Zhi-Ling.
Afiliação
  • Liu YX; Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Research and D
  • Bai JX; Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
  • Li T; Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Research and D
  • Fu XQ; Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Research and D
  • Guo H; Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Research and D
  • Zhu PL; Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Research and D
  • Chan YC; Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Research and D
  • Chou JY; Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Research and D
  • Yin CL; Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Research and D
  • Li JK; Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Research and D
  • Wang YP; Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Research and D
  • Chen YJ; Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Research and D
  • Yu ZL; Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Research and D
Pharmacol Res ; 142: 115-126, 2019 04.
Article em En | MEDLINE | ID: mdl-30797070
ABSTRACT
A traditional Chinese medicine (TCM) formula (SL) comprising Sophorae Flos and Lonicerae Japonicae Flos was used for treating melanoma in ancient China. We have previously shown that an ethanolic extract of SL (SLE) possesses anti-melanoma effects and suppresses STAT3 signaling in vitro and in vivo. STAT3 has been linked to the development of melanoma immunosuppressive microenvironment. In this work, we investigated whether SLE inhibits melanoma growth by reprogramming the tumor microenvironment in mouse and co-culture cell models. In B16F10 melanoma-bearing mice, we found that intragastric administration of SLE (1.2 g/kg) dramatically inhibited tumor growth. This observation was associated with the downregulation of protein levels of phospho-STAT3 (Tyr 705) and STAT3-regulated immunosuppressive cytokines, and mRNA levels of STAT3-targeted genes involved in tumor growth and immune evasion. We also observed increased Th, Tc and dendritic cells in the melanomas and spleens in SLE-treated mice compared to that in control mice. In a co-culture system composed of B16F10 cells and mouse primary splenic lymphocytes, it was found that SLE not only inhibited STAT3 activation in B16F10 cells, but also downregulated mRNA levels of STAT3-targeted genes in the splenic lymphocytes. In this co-culture setting, SLE decreased the levels of STAT3-regulated immunosuppressive cytokines, increased the percentages of Th, Tc and dendritic cells as well. Furthermore, effects of SLE on STAT3 phosphorylation, cytokine levels and immune cell subtype percentages were significantly weaker in the B16STAT3C cells (stable cells harboring a constitutively active STAT3 variant STAT3C)/splenic lymphocytes co-culture system than in the B16V cells (cells stably transfected with the empty vector)/splenic lymphocytes co-culture system, indicating that STAT3 over-activation diminishes SLE's effects. In summary, our findings indicate that reprograming the immune microenvironment, partially mediated by inhibiting STAT3 signaling, contributes to the anti-melanoma mechanisms of SLE. This study provides further pharmacological groundwork for developing SLE as a modern agent for melanoma prevention/treatment, and supports the notion that reprograming immunosuppressive microenvironment is a viable anti-melanoma strategy.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias Cutâneas / Melanoma Experimental / Extratos Vegetais / Sophora / Fator de Transcrição STAT3 / Microambiente Tumoral / Antineoplásicos Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Animals Idioma: En Revista: Pharmacol Res Assunto da revista: FARMACOLOGIA Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias Cutâneas / Melanoma Experimental / Extratos Vegetais / Sophora / Fator de Transcrição STAT3 / Microambiente Tumoral / Antineoplásicos Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Animals Idioma: En Revista: Pharmacol Res Assunto da revista: FARMACOLOGIA Ano de publicação: 2019 Tipo de documento: Article