Your browser doesn't support javascript.
loading
An Unexpected Role of Cholesterol Sulfotransferase and its Regulation in Sensitizing Mice to Acetaminophen-Induced Liver Injury.
An, Yunqi; Wang, Pengcheng; Xu, Pengfei; Tung, Hung-Chun; Xie, Yang; Kirisci, Levent; Xu, Meishu; Ren, Songrong; Tian, Xin; Ma, Xiaochao; Xie, Wen.
Afiliação
  • An Y; Center for Pharmacogenetics and Department of Pharmaceutical Sciences, (Y.A., P.W., P.X., H-C.T., Y.X., L.K., M.X., S.R., X.T., X.M., W.X.) and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pharmacy, The First Affiliated
  • Wang P; Center for Pharmacogenetics and Department of Pharmaceutical Sciences, (Y.A., P.W., P.X., H-C.T., Y.X., L.K., M.X., S.R., X.T., X.M., W.X.) and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pharmacy, The First Affiliated
  • Xu P; Center for Pharmacogenetics and Department of Pharmaceutical Sciences, (Y.A., P.W., P.X., H-C.T., Y.X., L.K., M.X., S.R., X.T., X.M., W.X.) and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pharmacy, The First Affiliated
  • Tung HC; Center for Pharmacogenetics and Department of Pharmaceutical Sciences, (Y.A., P.W., P.X., H-C.T., Y.X., L.K., M.X., S.R., X.T., X.M., W.X.) and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pharmacy, The First Affiliated
  • Xie Y; Center for Pharmacogenetics and Department of Pharmaceutical Sciences, (Y.A., P.W., P.X., H-C.T., Y.X., L.K., M.X., S.R., X.T., X.M., W.X.) and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pharmacy, The First Affiliated
  • Kirisci L; Center for Pharmacogenetics and Department of Pharmaceutical Sciences, (Y.A., P.W., P.X., H-C.T., Y.X., L.K., M.X., S.R., X.T., X.M., W.X.) and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pharmacy, The First Affiliated
  • Xu M; Center for Pharmacogenetics and Department of Pharmaceutical Sciences, (Y.A., P.W., P.X., H-C.T., Y.X., L.K., M.X., S.R., X.T., X.M., W.X.) and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pharmacy, The First Affiliated
  • Ren S; Center for Pharmacogenetics and Department of Pharmaceutical Sciences, (Y.A., P.W., P.X., H-C.T., Y.X., L.K., M.X., S.R., X.T., X.M., W.X.) and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pharmacy, The First Affiliated
  • Tian X; Center for Pharmacogenetics and Department of Pharmaceutical Sciences, (Y.A., P.W., P.X., H-C.T., Y.X., L.K., M.X., S.R., X.T., X.M., W.X.) and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pharmacy, The First Affiliated
  • Ma X; Center for Pharmacogenetics and Department of Pharmaceutical Sciences, (Y.A., P.W., P.X., H-C.T., Y.X., L.K., M.X., S.R., X.T., X.M., W.X.) and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pharmacy, The First Affiliated
  • Xie W; Center for Pharmacogenetics and Department of Pharmaceutical Sciences, (Y.A., P.W., P.X., H-C.T., Y.X., L.K., M.X., S.R., X.T., X.M., W.X.) and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pharmacy, The First Affiliated
Mol Pharmacol ; 95(6): 597-605, 2019 06.
Article em En | MEDLINE | ID: mdl-30944208
ABSTRACT
Overdose of acetaminophen (APAP) is the leading cause of acute liver failure (ALF) in the United States. The sulfotransferase-mediated sulfation of APAP is widely believed to be a protective mechanism to attenuate the hepatotoxicity of APAP. The cholesterol sulfotransferase SULT2B1b is best known for its activity in catalyzing the sulfoconjugation of cholesterol to synthesize cholesterol sulfate. SULT2B1b can be transcriptionally and positively regulated by the hepatic nuclear factor 4α (HNF4α). In this study, we uncovered an unexpected role for SULT2B1b in APAP toxicity. Hepatic overexpression of SULT2B1b sensitized mice to APAP-induced liver injury, whereas ablation of the Sult2B1b gene in mice conferred resistance to the APAP hepatotoxicity. Consistent with the notion that Sult2B1b is a transcriptional target of HNF4α, overexpression of HNF4α sensitized mice or primary hepatocytes to APAP-induced hepatotoxicity in a Sult2B1b-dependent manner. We conclude that the HNF4α-SULT2B1b axis has a unique role in APAP-induced acute liver injury, and SULT2B1b induction might be a risk factor for APAP hepatotoxicity.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Sulfotransferases / Fator 4 Nuclear de Hepatócito / Doença Hepática Crônica Induzida por Substâncias e Drogas / Overdose de Drogas / Acetaminofen Tipo de estudo: Etiology_studies / Prognostic_studies / Risk_factors_studies Limite: Animals Idioma: En Revista: Mol Pharmacol Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Sulfotransferases / Fator 4 Nuclear de Hepatócito / Doença Hepática Crônica Induzida por Substâncias e Drogas / Overdose de Drogas / Acetaminofen Tipo de estudo: Etiology_studies / Prognostic_studies / Risk_factors_studies Limite: Animals Idioma: En Revista: Mol Pharmacol Ano de publicação: 2019 Tipo de documento: Article