Your browser doesn't support javascript.
loading
Analysis of the Diffusivity Change from Single-Molecule Trajectories on Living Cells.
Zhao, Rong; Yuan, Jinghe; Li, Nan; Sun, Yahong; Xia, Tie; Fang, Xiaohong.
Afiliação
  • Zhao R; Beijing National Research Center for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China.
  • Yuan J; University of Chinese Academy of Sciences , Beijing 100049 , P. R. China.
  • Li N; Beijing National Research Center for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China.
  • Sun Y; Beijing National Research Center for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China.
  • Xia T; University of Chinese Academy of Sciences , Beijing 100049 , P. R. China.
  • Fang X; Beijing National Research Center for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China.
Anal Chem ; 91(21): 13390-13397, 2019 11 05.
Article em En | MEDLINE | ID: mdl-31580655
ABSTRACT
With the wide application of live-cell single-molecule imaging and tracking of biomolecules at work, deriving diffusion state changes of individual molecules is of particular interest as these changes reflect molecular oligomerization or interaction with other cellular components and thus correlate with functional changes. We have developed a Rayleigh mixture distribution-based hidden Markov model method to analyze time-lapse diffusivity change of single molecules, especially membrane proteins, with unknown dynamic states in living cells. With this method, the diffusion parameters, including diffusion state number, state transition probability, diffusion coefficient, and state mixture ratio, can be extracted from the single-molecule diffusion trajectories accurately via easy computation. The validity of our method has been demonstrated with not only experiments on synthetic trajectories but also single-molecule fluorescence imaging data of two typical membrane receptors. Our method offers a new analytical tool for the investigation of molecular interaction kinetics at the single-molecule level.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Imagem Individual de Molécula Tipo de estudo: Health_economic_evaluation / Prognostic_studies Limite: Humans Idioma: En Revista: Anal Chem Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Imagem Individual de Molécula Tipo de estudo: Health_economic_evaluation / Prognostic_studies Limite: Humans Idioma: En Revista: Anal Chem Ano de publicação: 2019 Tipo de documento: Article