Your browser doesn't support javascript.
loading
Mapping the dielectric constant of a single bacterial cell at the nanoscale with scanning dielectric force volume microscopy.
Checa, Martí; Millan-Solsona, Ruben; Blanco, Nuria; Torrents, Eduard; Fabregas, Rene; Gomila, Gabriel.
Afiliação
  • Checa M; Nanoscale Bioelectrical Characterization, Institut de Bioenginyeria de Catalunya (IBEC), The Barcelona Institute of Science and Technology, c/Baldiri i Reixac 11-15, 08028, Barcelona, Spain. ggomila@ibecbarcelona.eu and Departament d'Enginyeria Electrònica i Biomèdica, Universitat de Barcelona, c/Ma
  • Millan-Solsona R; Nanoscale Bioelectrical Characterization, Institut de Bioenginyeria de Catalunya (IBEC), The Barcelona Institute of Science and Technology, c/Baldiri i Reixac 11-15, 08028, Barcelona, Spain. ggomila@ibecbarcelona.eu and Departament d'Enginyeria Electrònica i Biomèdica, Universitat de Barcelona, c/Ma
  • Blanco N; Bacterial Infections: Antimicrobial Therapies, Institut de Bioenginyeria de Catalunya (IBEC), The Barcelona Institute of Science and Technology, c/Baldiri i Reixac 11-15, 08028, Barcelona.
  • Torrents E; Bacterial Infections: Antimicrobial Therapies, Institut de Bioenginyeria de Catalunya (IBEC), The Barcelona Institute of Science and Technology, c/Baldiri i Reixac 11-15, 08028, Barcelona.
  • Fabregas R; Departament d'Enginyeria Electrònica i Biomèdica, Universitat de Barcelona, c/Martí i Franquès 1, 08028, Barcelona, Spain.
  • Gomila G; Nanoscale Bioelectrical Characterization, Institut de Bioenginyeria de Catalunya (IBEC), The Barcelona Institute of Science and Technology, c/Baldiri i Reixac 11-15, 08028, Barcelona, Spain. ggomila@ibecbarcelona.eu and Departament d'Enginyeria Electrònica i Biomèdica, Universitat de Barcelona, c/Ma
Nanoscale ; 11(43): 20809-20819, 2019 Nov 21.
Article em En | MEDLINE | ID: mdl-31657419
ABSTRACT
Mapping the dielectric constant at the nanoscale of samples showing a complex topography, such as non-planar nanocomposite materials or single cells, poses formidable challenges to existing nanoscale dielectric microscopy techniques. Here we overcome these limitations by introducing Scanning Dielectric Force Volume Microscopy. This scanning probe microscopy technique is based on the acquisition of electrostatic force approach curves at every point of a sample and its post-processing and quantification by using a computational model that incorporates the actual measured sample topography. The technique provides quantitative nanoscale images of the local dielectric constant of the sample with unparalleled accuracy, spatial resolution and statistical significance, irrespectively of the complexity of its topography. We illustrate the potential of the technique by presenting a nanoscale dielectric constant map of a single bacterial cell, including its small-scale appendages. The bacterial cell shows three characteristic equivalent dielectric constant values, namely, εr,bac1 = 2.6 ± 0.2, εr,bac2 = 3.6 ± 0.4 and εr,bac3 = 4.9 ± 0.5, which enable identifying different dielectric properties of the cell wall and of the cytoplasmatic region, as well as, the existence of variations in the dielectric constant along the bacterial cell wall itself. Scanning Dielectric Force Volume Microscopy is expected to have an important impact in Materials and Life Sciences where the mapping of the dielectric properties of samples showing complex nanoscale topographies is often needed.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Pseudomonas aeruginosa / Microscopia de Força Atômica / Capacitância Elétrica Tipo de estudo: Prognostic_studies Idioma: En Revista: Nanoscale Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Pseudomonas aeruginosa / Microscopia de Força Atômica / Capacitância Elétrica Tipo de estudo: Prognostic_studies Idioma: En Revista: Nanoscale Ano de publicação: 2019 Tipo de documento: Article