Your browser doesn't support javascript.
loading
Acetaldehyde dehydrogenase 2 deficiency increases mitochondrial reactive oxygen species emission and induces mitochondrial protease Omi/HtrA2 in skeletal muscle.
Wakabayashi, Yuka; Tamura, Yuki; Kouzaki, Karina; Kikuchi, Naoki; Hiranuma, Kenji; Menuki, Kunitaka; Tajima, Takafumi; Yamanaka, Yoshiaki; Sakai, Akinori; Nakayama, Keiichi I; Kawamoto, Toshihiro; Kitagawa, Kyoko; Nakazato, Koichi.
Afiliação
  • Wakabayashi Y; Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan.
  • Tamura Y; Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan.
  • Kouzaki K; Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan.
  • Kikuchi N; Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan.
  • Hiranuma K; Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan.
  • Menuki K; Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan.
  • Tajima T; Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan.
  • Yamanaka Y; Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan.
  • Sakai A; Department of Orthopedic Surgery, School of Medicine, University of Occupational and Environmental Health, Fukuoka, Japan.
  • Nakayama KI; Department of Orthopedic Surgery, School of Medicine, University of Occupational and Environmental Health, Fukuoka, Japan.
  • Kawamoto T; Department of Orthopedic Surgery, School of Medicine, University of Occupational and Environmental Health, Fukuoka, Japan.
  • Kitagawa K; Department of Orthopedic Surgery, School of Medicine, University of Occupational and Environmental Health, Fukuoka, Japan.
  • Nakazato K; Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyusyu University, Fukuoka, Japan.
Am J Physiol Regul Integr Comp Physiol ; 318(4): R677-R690, 2020 04 01.
Article em En | MEDLINE | ID: mdl-32048867
ABSTRACT
Acetaldehyde dehydrogenase 2 (ALDH2) is an enzyme involved in redox homeostasis as well as the detoxification process in alcohol metabolism. Nearly 8% of the world's population have an inactivating mutation in the ALDH2 gene. However, the expression patterns and specific functions of ALDH2 in skeletal muscles are still unclear. Herein, we report that ALDH2 is expressed in skeletal muscle and is localized to the mitochondrial fraction. Oxidative muscles had a higher amount of ALDH2 protein than glycolytic muscles. We next comprehensively investigated whether ALDH2 knockout in mice induces mitochondrial adaptations in gastrocnemius muscle (for example, content, enzymatic activity, respiratory function, supercomplex formation, and functional networking). We found that ALDH2 deficiency resulted in partial mitochondrial dysfunction in gastrocnemius muscle because it increased mitochondrial reactive oxygen species (ROS) emission (2',7'-dichlorofluorescein and MitoSOX oxidation rate during respiration) and the frequency of regional mitochondrial depolarization. Moreover, we determined whether ALDH2 deficiency and the related mitochondrial dysfunction trigger mitochondrial stress and quality control responses in gastrocnemius muscle (for example, mitophagy markers, dynamics, and the unfolded protein response). We found that ALDH2 deficiency upregulated the mitochondrial serine protease Omi/HtrA2 (a marker of the activation of a branch of the mitochondrial unfolded protein response). In summary, ALDH2 deficiency leads to greater mitochondrial ROS production, but homeostasis can be maintained via an appropriate stress response.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Espécies Reativas de Oxigênio / Músculo Esquelético / Aldeído-Desidrogenase Mitocondrial / Serina Peptidase 2 de Requerimento de Alta Temperatura A / Genótipo / Mitocôndrias Limite: Animals Idioma: En Revista: Am J Physiol Regul Integr Comp Physiol Assunto da revista: FISIOLOGIA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Japão

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Espécies Reativas de Oxigênio / Músculo Esquelético / Aldeído-Desidrogenase Mitocondrial / Serina Peptidase 2 de Requerimento de Alta Temperatura A / Genótipo / Mitocôndrias Limite: Animals Idioma: En Revista: Am J Physiol Regul Integr Comp Physiol Assunto da revista: FISIOLOGIA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Japão