Your browser doesn't support javascript.
loading
Capacitive Sensing for Monitoring of Microfluidic Protocols Using Nanoliter Dispensing and Acoustic Mixing.
Zhang, Yaqi; Sesen, Muhsincan; de Marco, Alex; Neild, Adrian.
Afiliação
  • Zhang Y; Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, Australia.
  • Sesen M; Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, Australia.
  • de Marco A; Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom.
  • Neild A; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
Anal Chem ; 92(15): 10725-10732, 2020 08 04.
Article em En | MEDLINE | ID: mdl-32627542
The development of protocols for bio/chemical reaction requires alternate dispensing and mixing steps. While most microfluidic systems use the opening of additional parts of the channel to allow the ingress of fixed volumes of fluid, this requires knowledge of the protocol before the design of the chip. Our approach of using a microfluidic valve to regulate the flow into an initially empty cavity allows for on-chip protocol development and refinement. Mixing is provided by way of surface acoustic wave excitation; this high-frequency vibration causes steady-state streaming flows. We show that capacitive sensing can be used to measure fluid levels, even if multiple fluid types are used, such that nanoliter dispensing accuracy is achieved. Also, the capacitive readout can be used to establish mixing quality and to monitor temperature fluctuations. These capabilities allow for protocols to be conducted without optical assessment and thus will allow for multiplexing, such that reactions could be conducted, simultaneously, in multiple chambers across a chip.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Anal Chem Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Austrália

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Anal Chem Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Austrália