Your browser doesn't support javascript.
loading
Involvement of Indoleamine-2,3-Dioxygenase and Kynurenine Pathway in Experimental Autoimmune Encephalomyelitis in Mice.
Zarzecki, Micheli Stéfani; Cattelan Souza, Leandro; Giacomeli, Renata; Silva, Marcia Rósula Poetini; Prigol, Marina; Boeira, Silvana Peterini; Jesse, Cristiano Ricardo.
Afiliação
  • Zarzecki MS; Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui, RS, CEP 97650-000, Brazil.
  • Cattelan Souza L; Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui, RS, CEP 97650-000, Brazil. leandrocattelan@hotmail.com.
  • Giacomeli R; Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui, RS, CEP 97650-000, Brazil.
  • Silva MRP; Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui, RS, CEP 97650-000, Brazil.
  • Prigol M; Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui, RS, CEP 97650-000, Brazil.
  • Boeira SP; Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui, RS, CEP 97650-000, Brazil.
  • Jesse CR; Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui, RS, CEP 97650-000, Brazil.
Neurochem Res ; 45(12): 2959-2977, 2020 Dec.
Article em En | MEDLINE | ID: mdl-33040279
ABSTRACT
The experimental autoimmune encephalomyelitis (EAE) is a model that mimics multiple sclerosis in rodents. Evidence has suggested that the activation of indoleamine-2,3-dioxygenase (IDO), the rate-limiting enzyme in the kynurenine pathway (KP), plays a crucial role in inflammation-related diseases. The present study aimed to investigate the involvement of the inflammatory process and KP components in a model of EAE in mice. To identify the role of KP in EAE pathogenesis, mice received IDO inhibitor (INCB024360) at a dose of 200 mg/kg (per oral) for 25 days. We demonstrated that IDO inhibitor mitigated the clinical signs of EAE, in parallel with the reduction of cytokine levels (brain, spinal cord, spleen and lymph node) and ionized calcium-binding adaptor protein-1 (Iba-1) gene expression in the central nervous system of EAE mice. Besides, IDO inhibitor causes a significant decrease in the levels of tryptophan, kynurenine and neurotoxic metabolites of KP, such as 3-hydroxykynurenine (3-HK) and quinolinic acid (QUIN) in the prefrontal cortex, hippocampus, spinal cord, spleen and lymph node of EAE mice. The mRNA expression and enzyme activity of IDO and kynurenine 3-monooxygenase (KMO) were also reduced by IDO inhibitor. These findings indicate that the inflammatory process concomitant with the activation of IDO/KP is involved in the pathogenic mechanisms of EAE. The modulation of KP is a promising target for novel pharmacological treatment of MS.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Encefalomielite Autoimune Experimental / Indolamina-Pirrol 2,3,-Dioxigenase Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Neurochem Res Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Brasil

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Encefalomielite Autoimune Experimental / Indolamina-Pirrol 2,3,-Dioxigenase Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Neurochem Res Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Brasil