Your browser doesn't support javascript.
loading
Mir-30d Regulates Cardiac Remodeling by Intracellular and Paracrine Signaling.
Li, Jin; Salvador, Ane M; Li, Guoping; Valkov, Nedyalka; Ziegler, Olivia; Yeri, Ashish; Yang Xiao, Chun; Meechoovet, Bessie; Alsop, Eric; Rodosthenous, Rodosthenis S; Kundu, Piyusha; Huan, Tianxiao; Levy, Daniel; Tigges, John; Pico, Alexander R; Ghiran, Ionita; Silverman, Michael G; Meng, Xiangmin; Kitchen, Robert; Xu, Jiahong; Van Keuren-Jensen, Kendall; Shah, Ravi; Xiao, Junjie; Das, Saumya.
Afiliação
  • Li J; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, China (J.L., X.M., J. Xiao).
  • Salvador AM; Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston (A.M.S., G.L., N.V., O.Z., A.Y., C.Y.X., R.S.R., PK., M.G.S., R.K., R.S., S.D.).
  • Li G; Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston (A.M.S., G.L., N.V., O.Z., A.Y., C.Y.X., R.S.R., PK., M.G.S., R.K., R.S., S.D.).
  • Valkov N; Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston (A.M.S., G.L., N.V., O.Z., A.Y., C.Y.X., R.S.R., PK., M.G.S., R.K., R.S., S.D.).
  • Ziegler O; Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston (A.M.S., G.L., N.V., O.Z., A.Y., C.Y.X., R.S.R., PK., M.G.S., R.K., R.S., S.D.).
  • Yeri A; Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston (A.M.S., G.L., N.V., O.Z., A.Y., C.Y.X., R.S.R., PK., M.G.S., R.K., R.S., S.D.).
  • Yang Xiao C; Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston (A.M.S., G.L., N.V., O.Z., A.Y., C.Y.X., R.S.R., PK., M.G.S., R.K., R.S., S.D.).
  • Meechoovet B; Neurogenomics Division, TGen, Phoenix, AZ (B.M., E.A., K.V.K.-J.).
  • Alsop E; Neurogenomics Division, TGen, Phoenix, AZ (B.M., E.A., K.V.K.-J.).
  • Rodosthenous RS; Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston (A.M.S., G.L., N.V., O.Z., A.Y., C.Y.X., R.S.R., PK., M.G.S., R.K., R.S., S.D.).
  • Kundu P; Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston (A.M.S., G.L., N.V., O.Z., A.Y., C.Y.X., R.S.R., PK., M.G.S., R.K., R.S., S.D.).
  • Huan T; The Framingham Heart Study and The Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, NIH, Bethesda, MD (T.H., D.L.).
  • Levy D; The Framingham Heart Study and The Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, NIH, Bethesda, MD (T.H., D.L.).
  • Tigges J; Division of Allergy and Inflammation, Beth Israel Deaconess Medical Center, Boston, MA (J.T., I.G.).
  • Pico AR; Gladstone Institutes, San Francisco, CA (A.R.P.).
  • Ghiran I; Division of Allergy and Inflammation, Beth Israel Deaconess Medical Center, Boston, MA (J.T., I.G.).
  • Silverman MG; Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston (A.M.S., G.L., N.V., O.Z., A.Y., C.Y.X., R.S.R., PK., M.G.S., R.K., R.S., S.D.).
  • Meng X; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, China (J.L., X.M., J. Xiao).
  • Kitchen R; Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston (A.M.S., G.L., N.V., O.Z., A.Y., C.Y.X., R.S.R., PK., M.G.S., R.K., R.S., S.D.).
  • Xu J; Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China (J. Xu).
  • Van Keuren-Jensen K; Neurogenomics Division, TGen, Phoenix, AZ (B.M., E.A., K.V.K.-J.).
  • Shah R; Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston (A.M.S., G.L., N.V., O.Z., A.Y., C.Y.X., R.S.R., PK., M.G.S., R.K., R.S., S.D.).
  • Xiao J; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, China (J.L., X.M., J. Xiao).
  • Das S; Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston (A.M.S., G.L., N.V., O.Z., A.Y., C.Y.X., R.S.R., PK., M.G.S., R.K., R.S., S.D.).
Circ Res ; 128(1): e1-e23, 2021 01 08.
Article em En | MEDLINE | ID: mdl-33092465
ABSTRACT
RATIONALE Previous translational studies implicate plasma extracellular microRNA-30d (miR-30d) as a biomarker in left ventricular remodeling and clinical outcome in heart failure (HF) patients, although precise mechanisms remain obscure.

OBJECTIVE:

To investigate the mechanism of miR-30d-mediated cardioprotection in HF. METHODS AND

RESULTS:

In rat and mouse models of ischemic HF, we show that miR-30d gain of function (genetic, lentivirus, or agomiR-mediated) improves cardiac function, decreases myocardial fibrosis, and attenuates cardiomyocyte (CM) apoptosis. Genetic or locked nucleic acid-based knock-down of miR-30d expression potentiates pathological left ventricular remodeling, with increased dysfunction, fibrosis, and cardiomyocyte death. RNA sequencing of in vitro miR-30d gain and loss of function, together with bioinformatic prediction and experimental validation in cardiac myocytes and fibroblasts, were used to identify and validate direct targets of miR-30d. miR-30d expression is selectively enriched in cardiomyocytes, induced by hypoxic stress and is acutely protective, targeting MAP4K4 (mitogen-associate protein kinase 4) to ameliorate apoptosis. Moreover, miR-30d is secreted primarily in extracellular vesicles by cardiomyocytes and inhibits fibroblast proliferation and activation by directly targeting integrin α5 in the acute phase via paracrine signaling to cardiac fibroblasts. In the chronic phase of ischemic remodeling, lower expression of miR-30d in the heart and plasma extracellular vesicles is associated with adverse remodeling in rodent models and human subjects and is linked to whole-blood expression of genes implicated in fibrosis and inflammation, consistent with observations in model systems.

CONCLUSIONS:

These findings provide the mechanistic underpinning for the cardioprotective association of miR-30d in human HF. More broadly, our findings support an emerging paradigm involving intercellular communication of extracellular vesicle-contained miRNAs (microRNAs) to transregulate distinct signaling pathways across cell types. Functionally validated RNA biomarkers and their signaling networks may warrant further investigation as novel therapeutic targets in HF.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Função Ventricular Esquerda / Comunicação Parácrina / Remodelação Ventricular / MicroRNAs / Infarto do Miocárdio / Miocárdio Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Circ Res Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Função Ventricular Esquerda / Comunicação Parácrina / Remodelação Ventricular / MicroRNAs / Infarto do Miocárdio / Miocárdio Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Circ Res Ano de publicação: 2021 Tipo de documento: Article