Your browser doesn't support javascript.
loading
Root presence modifies the long-term decomposition dynamics of fungal necromass and the associated microbial communities in a boreal forest.
Maillard, François; Kennedy, Peter G; Adamczyk, Bartosz; Heinonsalo, Jussi; Buée, Marc.
Afiliação
  • Maillard F; INRAE, UMR IAM, Université de Lorraine, Nancy, France.
  • Kennedy PG; Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA.
  • Adamczyk B; Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA.
  • Heinonsalo J; Natural Resources Institute Finland, Helsinki, Finland.
  • Buée M; Department of Microbiology, University of Helsinki, Helsinki, Finland.
Mol Ecol ; 30(8): 1921-1935, 2021 04.
Article em En | MEDLINE | ID: mdl-33544953
ABSTRACT
Recent studies have highlighted that dead fungal mycelium represents an important fraction of soil carbon (C) and nitrogen (N) inputs and stocks. Consequently, identifying the microbial communities and the ecological factors that govern the decomposition of fungal necromass will provide critical insight into how fungal organic matter (OM) affects forest soil C and nutrient cycles. Here, we examined the microbial communities colonising fungal necromass during a multiyear decomposition experiment in a boreal forest, which included incubation bags with different mesh sizes to manipulate both plant root and microbial decomposer group access. Necromass-associated bacterial and fungal communities were taxonomically and functionally rich throughout the 30 months of incubation, with increasing abundances of oligotrophic bacteria and root-associated fungi (i.e., ectomycorrhizal, ericoid mycorrhizal and endophytic fungi) in the late stages of decomposition in the mesh bags to which they had access. Necromass-associated ß-glucosidase activity was highest at 6 months, while leucine aminopeptidase peptidase was highest at 18 months. Based on an asymptotic decomposition model, root presence was associated with an initial faster rate of fungal necromass decomposition, but resulted in higher amounts of fungal necromass retained at later sampling times. Collectively, these results indicate that microbial community composition and enzyme activities on decomposing fungal necromass remain dynamic years after initial input, and that roots and their associated fungal symbionts result in the slowing of microbial necromass turnover with time.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Micorrizas / Microbiota Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Mol Ecol Assunto da revista: BIOLOGIA MOLECULAR / SAUDE AMBIENTAL Ano de publicação: 2021 Tipo de documento: Article País de afiliação: França

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Micorrizas / Microbiota Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Mol Ecol Assunto da revista: BIOLOGIA MOLECULAR / SAUDE AMBIENTAL Ano de publicação: 2021 Tipo de documento: Article País de afiliação: França