Your browser doesn't support javascript.
loading
The Widened Pipe Model of plant hydraulic evolution.
Koçillari, Loren; Olson, Mark E; Suweis, Samir; Rocha, Rodrigo P; Lovison, Alberto; Cardin, Franco; Dawson, Todd E; Echeverría, Alberto; Fajardo, Alex; Lechthaler, Silvia; Martínez-Pérez, Cecilia; Marcati, Carmen Regina; Chung, Kuo-Fang; Rosell, Julieta A; Segovia-Rivas, Alí; Williams, Cameron B; Petrone-Mendoza, Emilio; Rinaldo, Andrea; Anfodillo, Tommaso; Banavar, Jayanth R; Maritan, Amos.
Afiliação
  • Koçillari L; Dipartimento di Fisica e Astronomia G. Galilei, Istituto Nazionale di Fisica Nucleare, Università di Padova, 35131 Padova, Italy.
  • Olson ME; Laboratory of Neural Computation, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy.
  • Suweis S; Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; molson@ib.unam.mx andrea.rinaldo@epfl.ch banavar@uoregon.edu.
  • Rocha RP; Dipartimento di Fisica e Astronomia G. Galilei, Istituto Nazionale di Fisica Nucleare, Università di Padova, 35131 Padova, Italy.
  • Lovison A; Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis-SC 88040-900, Brazil.
  • Cardin F; Dipartimento di Matematica Tullio Levi-Civita, Università di Padova, 35121 Padova, Italy.
  • Dawson TE; Dipartimento di Matematica Tullio Levi-Civita, Università di Padova, 35121 Padova, Italy.
  • Echeverría A; Department of Integrative Biology, University of California, Berkeley, CA 94720-3140.
  • Fajardo A; Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720-3140.
  • Lechthaler S; Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
  • Martínez-Pérez C; Instituto de Investigación Interdisciplinario (I), Universidad de Talca, Campus Lircay, Talca 3460000, Chile.
  • Marcati CR; Dipartimento Territorio e Sistemi Agro-Forestali, Università di Padova, Legnaro 35020, Italy.
  • Chung KF; Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
  • Rosell JA; Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico.
  • Segovia-Rivas A; Faculdade de Ciências Agronômicas, Universidade Estadual Paulista, São Paulo 18603970, Brazil.
  • Williams CB; Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan.
  • Petrone-Mendoza E; Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico.
  • Rinaldo A; Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
  • Anfodillo T; Department of Integrative Biology, University of California, Berkeley, CA 94720-3140.
  • Banavar JR; Channel Islands National Park, Ventura, CA 93001-4354.
  • Maritan A; Santa Barbara Botanic Garden, Santa Barbara, CA 93105-2126.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Article em En | MEDLINE | ID: mdl-34039710
ABSTRACT
Shaping global water and carbon cycles, plants lift water from roots to leaves through xylem conduits. The importance of xylem water conduction makes it crucial to understand how natural selection deploys conduit diameters within and across plants. Wider conduits transport more water but are likely more vulnerable to conduction-blocking gas embolisms and cost more for a plant to build, a tension necessarily shaping xylem conduit diameters along plant stems. We build on this expectation to present the Widened Pipe Model (WPM) of plant hydraulic evolution, testing it against a global dataset. The WPM predicts that xylem conduits should be narrowest at the stem tips, widening quickly before plateauing toward the stem base. This universal profile emerges from Pareto modeling of a trade-off between just two competing vectors of natural selection one favoring rapid widening of conduits tip to base, minimizing hydraulic resistance, and another favoring slow widening of conduits, minimizing carbon cost and embolism risk. Our data spanning terrestrial plant orders, life forms, habitats, and sizes conform closely to WPM predictions. The WPM highlights carbon economy as a powerful vector of natural selection shaping plant function. It further implies that factors that cause resistance in plant conductive systems, such as conduit pit membrane resistance, should scale in exact harmony with tip-to-base conduit widening. Furthermore, the WPM implies that alterations in the environments of individual plants should lead to changes in plant height, for example, shedding terminal branches and resprouting at lower height under drier climates, thus achieving narrower and potentially more embolism-resistant conduits.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Água / Fenômenos Fisiológicos Vegetais / Evolução Biológica / Xilema / Modelos Biológicos Tipo de estudo: Prognostic_studies Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Itália

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Água / Fenômenos Fisiológicos Vegetais / Evolução Biológica / Xilema / Modelos Biológicos Tipo de estudo: Prognostic_studies Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Itália