Your browser doesn't support javascript.
loading
The phenylpropanoid pathway inhibitor piperonylic acid induces broad-spectrum pest and disease resistance in plants.
Desmedt, Willem; Jonckheere, Wim; Nguyen, Viet Ha; Ameye, Maarten; De Zutter, Noémie; De Kock, Karen; Debode, Jane; Van Leeuwen, Thomas; Audenaert, Kris; Vanholme, Bartel; Kyndt, Tina.
Afiliação
  • Desmedt W; Epigenetics and Defence Group, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
  • Jonckheere W; Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
  • Nguyen VH; VIB Center for Plant Systems Biology, Ghent, Belgium.
  • Ameye M; Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
  • De Zutter N; Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
  • De Kock K; Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
  • Debode J; Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
  • Van Leeuwen T; Epigenetics and Defence Group, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
  • Audenaert K; Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium.
  • Vanholme B; Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
  • Kyndt T; Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
Plant Cell Environ ; 44(9): 3122-3139, 2021 09.
Article em En | MEDLINE | ID: mdl-34053100
ABSTRACT
Although many phenylpropanoid pathway-derived molecules act as physical and chemical barriers to pests and pathogens, comparatively little is known about their role in regulating plant immunity. To explore this research field, we transiently perturbed the phenylpropanoid pathway through application of the CINNAMIC ACID-4-HYDROXYLASE (C4H) inhibitor piperonylic acid (PA). Using bioassays involving diverse pests and pathogens, we show that transient C4H inhibition triggers systemic, broad-spectrum resistance in higher plants without affecting growth. PA treatment enhances tomato (Solanum lycopersicum) resistance in field and laboratory conditions, thereby illustrating the potential of phenylpropanoid pathway perturbation in crop protection. At the molecular level, transcriptome and metabolome analyses reveal that transient C4H inhibition in tomato reprograms phenylpropanoid and flavonoid metabolism, systemically induces immune signalling and pathogenesis-related genes, and locally affects reactive oxygen species metabolism. Furthermore, C4H inhibition primes cell wall modification and phenolic compound accumulation in response to root-knot nematode infection. Although PA treatment induces local accumulation of the phytohormone salicylic acid, the PA resistance phenotype is preserved in tomato plants expressing the salicylic acid-degrading NahG construct. Together, our results demonstrate that transient phenylpropanoid pathway perturbation is a conserved inducer of plant resistance and thus highlight the crucial regulatory role of this pathway in plant immunity.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Benzoatos / Resistência à Doença Limite: Animals Idioma: En Revista: Plant Cell Environ Assunto da revista: BOTANICA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Bélgica

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Benzoatos / Resistência à Doença Limite: Animals Idioma: En Revista: Plant Cell Environ Assunto da revista: BOTANICA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Bélgica