Your browser doesn't support javascript.
loading
The denatured state of HIV-1 protease under native conditions.
Rösner, Heike I; Caldarini, Martina; Potel, Gregory; Malmodin, Daniel; Vanoni, Maria A; Aliverti, Alessandro; Broglia, Ricardo A; Kragelund, Birthe B; Tiana, Guido.
Afiliação
  • Rösner HI; BRIC, University of Copenhagen, Copenhagen N, Denmark.
  • Caldarini M; Structural Biology and NMR Laboratory (SBiNlab), Department of Biology, University of Copenhagen, Copenhagen N, Denmark.
  • Potel G; Department of Physics, Università degli Studi di Milano and INFN, Milan, Italy.
  • Malmodin D; Lawrence Livermore National Laboratory, Livermore, California, USA.
  • Vanoni MA; Structural Biology and NMR Laboratory (SBiNlab), Department of Biology, University of Copenhagen, Copenhagen N, Denmark.
  • Aliverti A; Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy.
  • Broglia RA; Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy.
  • Kragelund BB; Department of Physics, Università degli Studi di Milano and INFN, Milan, Italy.
  • Tiana G; Niels Bohr Institutet, University of Copenhagen, Copenhagen Ø, Denmark.
Proteins ; 90(1): 96-109, 2022 01.
Article em En | MEDLINE | ID: mdl-34312913
ABSTRACT
The denatured state of several proteins has been shown to display transient structures that are relevant for folding, stability, and aggregation. To detect them by nuclear magnetic resonance (NMR) spectroscopy, the denatured state must be stabilized by chemical agents or changes in temperature. This makes the environment different from that experienced in biologically relevant processes. Using high-resolution heteronuclear NMR spectroscopy, we have characterized several denatured states of a monomeric variant of HIV-1 protease, which is natively structured in water, induced by different concentrations of urea, guanidinium chloride, and acetic acid. We have extrapolated the chemical shifts and the relaxation parameters to the denaturant-free denatured state at native conditions, showing that they converge to the same values. Subsequently, we characterized the conformational properties of this biologically relevant denatured state under native conditions by advanced molecular dynamics simulations and validated the results by comparison to experimental data. We show that the denatured state of HIV-1 protease under native conditions displays rich patterns of transient native and non-native structures, which could be of relevance to its guidance through a complex folding process.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Desnaturação Proteica / Protease de HIV / Simulação de Dinâmica Molecular Idioma: En Revista: Proteins Assunto da revista: BIOQUIMICA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Dinamarca

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Desnaturação Proteica / Protease de HIV / Simulação de Dinâmica Molecular Idioma: En Revista: Proteins Assunto da revista: BIOQUIMICA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Dinamarca