Your browser doesn't support javascript.
loading
Symmetry-derived structure directing agents for two-dimensional crystals of arbitrary colloids.
Mahynski, Nathan A; Shen, Vincent K.
Afiliação
  • Mahynski NA; Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8320, USA. nathan.mahynski@nist.gov.
Soft Matter ; 17(34): 7853-7866, 2021 Sep 14.
Article em En | MEDLINE | ID: mdl-34382053
ABSTRACT
We derive properties of self-assembling rings which can template the organization of an arbitrary colloid into any periodic symmetry in two Euclidean dimensions. By viewing this as a tiling problem, we illustrate how the shape and chemical patterning of these rings are derivable, and are explicitly reflected by the symmetry group's orbifold symbol. We performed molecular dynamics simulations to observe their self-assembly and found 5 different characteristics which could be easily rationalized on the basis of this symbol. These include systems which undergo chiral phase separation, are addressably complex, exhibit self-limiting growth into clusters, form ordered "rods" in only one-dimension akin to a smectic phase, and those from symmetry groups which are pluripotent and allow one to select rings which exhibit different behaviors. We discuss how the curvature of the ring's edges plays an integral role in achieving correct self-assembly, and illustrate how to obtain these shapes. This provides a method for patterning colloidal systems at interfaces without explicitly programming this information onto the colloid itself.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Soft Matter Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Soft Matter Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos