Your browser doesn't support javascript.
loading
A mechanistic investigation of the Li10GeP2S12|LiNi1-x-yCoxMnyO2 interface stability in all-solid-state lithium batteries.
Zuo, Tong-Tong; Rueß, Raffael; Pan, Ruijun; Walther, Felix; Rohnke, Marcus; Hori, Satoshi; Kanno, Ryoji; Schröder, Daniel; Janek, Jürgen.
Afiliação
  • Zuo TT; Institute of Physical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, D-35392, Giessen, Germany. tong-tong.zuo@pc.jlug.de.
  • Rueß R; Center for Materials Research (LaMa), Justus-Liebig-University Giessen, Heinrich-Buff-Ring 16, D-35392, Giessen, Germany. tong-tong.zuo@pc.jlug.de.
  • Pan R; Institute of Physical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, D-35392, Giessen, Germany.
  • Walther F; Center for Materials Research (LaMa), Justus-Liebig-University Giessen, Heinrich-Buff-Ring 16, D-35392, Giessen, Germany.
  • Rohnke M; Institute of Physical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, D-35392, Giessen, Germany.
  • Hori S; Center for Materials Research (LaMa), Justus-Liebig-University Giessen, Heinrich-Buff-Ring 16, D-35392, Giessen, Germany.
  • Kanno R; Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA.
  • Schröder D; Institute of Physical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, D-35392, Giessen, Germany.
  • Janek J; Center for Materials Research (LaMa), Justus-Liebig-University Giessen, Heinrich-Buff-Ring 16, D-35392, Giessen, Germany.
Nat Commun ; 12(1): 6669, 2021 Nov 18.
Article em En | MEDLINE | ID: mdl-34795212
ABSTRACT
All-solid-state batteries are intensively investigated, although their performance is not yet satisfactory for large-scale applications. In this context, the combination of Li10GeP2S12 solid electrolyte and LiNi1-x-yCoxMnyO2 positive electrode active materials is considered promising despite the yet unsatisfactory battery performance induced by the thermodynamically unstable electrode|electrolyte interface. Here, we report electrochemical and spectrometric studies to monitor the interface evolution during cycling and understand the reactivity and degradation kinetics. We found that the Wagner-type model for diffusion-controlled reactions describes the degradation kinetics very well, suggesting that electronic transport limits the growth of the degradation layer formed at the electrode|electrolyte interface. Furthermore, we demonstrate that the rate of interfacial degradation increases with the state of charge and the presence of two oxidation mechanisms at medium (3.7 V vs. Li+/Li < E < 4.2 V vs. Li+/Li) and high (E ≥ 4.2 V vs. Li+/Li) potentials. A high state of charge (>80%) triggers the structural instability and oxygen release at the positive electrode and leads to more severe degradation.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Alemanha