Your browser doesn't support javascript.
loading
Nano-sized zeolite-like metal-organic frameworks induced hematological effects on red blood cell.
Hao, Fang; Yan, Xiu-Ping.
Afiliação
  • Hao F; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
  • Yan XP; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China. Electronic address: xpyan@jiangnan.edu.cn.
J Hazard Mater ; 424(Pt A): 127353, 2022 02 15.
Article em En | MEDLINE | ID: mdl-34879558
ABSTRACT
Understanding the toxicity of metal-organic frameworks (MOFs) is important for improving their biocompatibility in further applications, especially the hematotoxicity of MOFs due to the unavoidable contact of MOFs with blood in biomedical science. Here we report the hematotoxicity and underlying mechanisms of nano-sized zeolite-like MOFs ZIF-8 and ZIF-67 because of their wide applications in biomedical science. ZIF-67 induced significant hemolysis of red blood cell (Rb) through breaking the structure of membrane due to the generation of free radicals, whereas ZIF-8 was hematocompatible. ZIF-67 was thus internalized by Rb and then bound with hemoglobin via hydrogen bond and van der Waals force, which influenced the structure and function of hemoglobin in accompany with heme release. These findings reveal the detailed mechanism of the hematological effects of MOFs on Rb and are helpful to the assessment of the toxicity and potential health risks of MOFs and the design of biosafe MOFs for biomedical applications.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Zeolitas / Estruturas Metalorgânicas Idioma: En Revista: J Hazard Mater Assunto da revista: SAUDE AMBIENTAL Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Zeolitas / Estruturas Metalorgânicas Idioma: En Revista: J Hazard Mater Assunto da revista: SAUDE AMBIENTAL Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China