Your browser doesn't support javascript.
loading
Metabolomic and Transcriptional Profiling of Oleuropein Bioconversion into Hydroxytyrosol during Table Olive Fermentation by Lactiplantibacillus plantarum.
Vaccalluzzo, Amanda; Solieri, Lisa; Tagliazucchi, Davide; Cattivelli, Alice; Martini, Serena; Pino, Alessandra; Caggia, Cinzia; Randazzo, Cinzia L.
Afiliação
  • Vaccalluzzo A; Department of Agriculture, Food and Environment, University of Cataniagrid.8158.4, Catania, Italy.
  • Solieri L; Department of Life Sciences, University of Modena and Reggio Emiliagrid.7548.e, Reggio Emilia, Italy.
  • Tagliazucchi D; Department of Life Sciences, University of Modena and Reggio Emiliagrid.7548.e, Reggio Emilia, Italy.
  • Cattivelli A; Department of Life Sciences, University of Modena and Reggio Emiliagrid.7548.e, Reggio Emilia, Italy.
  • Martini S; Department of Life Sciences, University of Modena and Reggio Emiliagrid.7548.e, Reggio Emilia, Italy.
  • Pino A; Department of Agriculture, Food and Environment, University of Cataniagrid.8158.4, Catania, Italy.
  • Caggia C; ProBioEtna srl, Catania, Italy.
  • Randazzo CL; Department of Agriculture, Food and Environment, University of Cataniagrid.8158.4, Catania, Italy.
Appl Environ Microbiol ; 88(6): e0201921, 2022 03 22.
Article em En | MEDLINE | ID: mdl-35170988
ABSTRACT
This study aims to elucidate the mechanisms responsible for the bioconversion of oleuropein into low-molecular-weight phenolic compounds in two selected Lactiplantibacillus plantarum strains, namely, C11C8 and F3.5, under stress brine conditions and at two different temperatures (16°C and 30°C). For this purpose, we adopted an experimental strategy that combined high-resolution mass spectrometry, in silico functional analysis of glycoside hydrolase family 1 (GH1)-encoding candidate genes, and gene expression studies. The oleuropein hydrolysis products and the underlying enzymatic steps were identified, and a novel putative bgl gene was detected, using seven strains belonging to the same species as controls. According to metabolomic analysis, a new intermediate compound (decarboxymethyl dialdehydic form of oleuropein aglycone) was revealed. In addition, strain C11C8 showed a decrease in the oleuropein content greater than that of the F3.5 strain (30% versus 15%) at a temperature of 16°C. The highest increase in hydroxytyrosol was depicted by strain C11C8 at a temperature of 30°C. PCR assays and sequencing analyses revealed that both strains possess bglH1, bglH2, and bglH3 genes. Furthermore, a reverse transcription-PCR (RT-PCR) assay showed that bglH3 is the only gene transcribed under all tested conditions, while bglH2 is switched off in strain C11C8 grown at cold temperatures, and no transcription was detected for the bglH1 gene. The bglH3 gene encodes a 6-phospho-ß-glucosidase, suggesting how phospho-ß-glucosidase activity could belong to the overall metabolic strategy undertaken by L. plantarum to survive in an environment poor in free sugars, like table olives. IMPORTANCE In the present study, a new candidate gene, bglH3, responsible for the ß-glucosidase-positive phenotype in L. plantarum was detected, providing the basis for the future marker-assisted selection of L. plantarum starter strains with a ß-glucosidase-positive phenotype. Furthermore, the ability of selected strains to hydrolyze oleuropein at low temperatures is important for application as starter cultures on an industrial scale.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Olea Idioma: En Revista: Appl Environ Microbiol Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Itália

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Olea Idioma: En Revista: Appl Environ Microbiol Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Itália